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Smart Observer

* Monitoring is limited to what
is observed. Run

* In real world, we learn from
near misses

* A single execution trace
contains more information
than appears at first sight

e Extract other possible runs
from a single execution

* Analyze all these runs

Smart
Observer



Smart Observers

*“Smartness” obtained by capturing
causality

*Possible global states generated
dynamically — form a lattice

*Analysis is performed on a level-by-level
basis in the lattice of global states



Causality

Define the partial order <
on the set of events:

1. ek <elifk < I
2 e <e'if
dx € Se <, e

and at least one of ¢, e’
changes state.

ce <e"if
e<e'ande' <e".




Vector Clocks and Relevant Events

*Consider a subset R of relevant events.

* R-relevant causality is a relation < C <
* < is a projection of <on R X R.

*We used a technique based on vector clocks
to implements the relevant causality relation.
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Causality and Vector Clocks

Theorem: If<e,i,V >and < e’,j, V' >
are messages sentthen e < e’ iff

VIi] <V'[j]

If i and j are not given, then
e eiff V<V
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Actor Creation

*A newly created actor inherits the
“vector clock” from its parent at
creation time.

*Vector Clock is not really a vector but an
association list of actor names and its
current estimated local time.



An Example

*Actor a requests certain value from
node b

b computes the value and sends it to a

*Property: no node receives a value from
another node to which it had not sent a
request



Centralized Monitoring Example

“If a receives a value from b then b calculated the
value after receiving request from a”

valRcv — ©(valComputed A ©valReq)
valRe ©valRe valCc < (valComputed A ©valReq) 1IReq)

S I e

valComputed

valReq | | valRcv
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Decentralized Approach

*Distribute property
*Properties expressed with respect to a process
*Local properties at every process

*Decentralize Monitoring

* Maintain knowledge of global state at each
process

* Update knowledge with incoming messages
e Attach knowledge with outgoing messages

* At each process check safety property against
local knowledge



Decentralized Monitoring Example

“If a receives a value from b then b calculated the
value after receiving request from a”

valRev — @, (< (valComputed A @,(®valReq)))

valComputed &valRe
@, . Valcomputed A @(OvalRed) 5 oyalReq))

b ® O >
valComputed

a @ @ >

valReq SvalRan valRcv

valRev — @,(<©(valComputed A @,(©valReq)))
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Past time Distributed Temporal Logic

*Based on epistemic logic
*Properties with respect to a process, say p

*Interpreted over a sequence of global states
that the actor p is aware of
e Each actor monitors the properties local to it

*No need for extra messages to create a
relevant portion of global state

* KnowledgeVector keeps track of relevant
global state that can effect a property.



Remote Expressions in pt-DTL

*Remote expressions — arbitrary expressions
related to the state of another actor

*Propositions constructed from remote and
local expressions

“If my alarm is set then eventually in past
difference between my temperature and
temperature at process b exceeded the
allowed value”

alarm — & ((myTemp - @, temp) > allowed)
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Safety in Airplane Landing

“If my airplane is landing then the
runway that the airport has allocated
matches the one that | am planning to

’)

use

landing — (runway =
@.ipor@llocRunway)
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Leader Election Example

“If a leader is elected then if the current
process is a leader then, at its
knowledge, none of the other processes
is a leader”

elected — (state=leader — /\iij(@j(state # leader)))



pt-DTL syntax and semantics

* F.::=true | false | P(E) | = F. | F.a F, propositional

| - F|¥F | ©F|FSF temporal
| @F, epistemic
*E x=c]|v,5V,|f(E) functional
| @E, epistemic
« . F.: previously F. * ¢ : constant
- ¥ F,:always in past F, * v, : variable at process |
« &Fi : eventually in past F, *P(E;) : predicate on E;
« F.SF’:F, since F, « f(E;) : function f applied to E;

* @F;: F; at process * @E; : expression E; at process |



Interpretation of @;E; at process i

S31 S32 S33
P3
m my
m, Sy,
P>
So1 S23
ms
P
S11 S12

Since, at s,; p, is aware of s, of p,

value of @,E in s,5 at p, = value of E in s4, at p;,
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Predictive Monitoring

*Can predict the violation from the run that
did not have the violation.

*Cannot detect a violation if there is no direct
communication of intermediate value from
pl to p2

* Need time-outs or alarms
* Have to be designed into the system



Causality Cone Heuristics

Not
Causally
related

v

*Theory of relativity
*Speed of light

*Space-time: causality cone
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Aggregate Properties

Example:

e A cluster has information
distributed across
thousands of nodes

 An attacker wants to steal
confidential information
from the cluster

*Each node sees only a few
file transfers per hour, a
common usage pattern

Attacker



Scalable Monitoring

*Local monitoring doesn’t help:
downloads(f, C) < limit

Is not violated at any node.

*Want to monitor for:
Z @,, downloads(f, C) < limit

neNodes

But monitoring thousands of nodes for
millions of events is too expensive!
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Statistical Runtime Monitoring

Efficient and effective to monitor
probabilistic properties:

Pr( z @,, downloads(f,C) < limit) > 0.999

neNodes

* Monitoring against
spatial and temporal
variations.

« cf: Statistical Model
Checking
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Adaptive Programs

\
Inference

T V.
s \ N
Monitoring === Adaptive Programs [Properties
. J T J

N
Synthesis & Verification
J
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Computational Reflection

A meta-level actor . ication

describes

functionality of it

actor. Cecerihe A ! reflection
* To change the reificalon

application’s \

behavior, modify
the relevant meta-  system
actor.



Use Runtime Monitoring to Infer
Specifications

* Assume violations are rare events
* Infer concurrency patterns by monitoring traces

* Use Bayesian methods for robustness against
outlier observations

»Incorporate new evidence in a structured way

»Rare spurious behavior weighed against
preponderance of contrary evidence and ignored

* Enforce or monitor for extended specification

* Example: figure out the intended concurrency
patterns and use it to transform to a safer actor
program



Goal: Moving Legacy Concurrent Programs to Clouds

Benefits of moving legacy programs to clouds

> Lower maintenance costs
» Easier and less costly redundancy

» Scalability

Some cloud migration problems

» Most legacy concurrent programs use shared memory
» Running on single virtual machine gives few advantages

» Difficult to simulate shared memory in distributed setting



Infrastructure-as-a-Service

Cloud User

h <

End User

ZS
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Application

Cloud Provider

Infrastructure




Platform-as-a-Service
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Scalability: Actor Model of Computation

An actor is an autonomous, concurrent agent which responds to
messages.

>

Actors operate asynchronously, potentially in parallel with
each other.

Actors do not share state

Each actor has a unique name (address) which cannot be
guessed.

Actor names may be communicated.

Actors interact by sending messages which are by default
asynchronous (and may be delivered out-of-order).



Actor Behavior

Upon receipt of a message, an actor may:
» create a new actor with a unique name (address).

> use the content of the message or perform some computation
and to change state.

» send a message to another actor.



Actor Implementation in Threaded Languages

An actor may be implemented as a concurrent object. Each actor:
» has a system-wide unique name (mailbox address);
> has an independent thread of control; and

» has a message queue and processes one message at a time.

mailbox



Execution of Message-Passing Programs in Networks




Execution of Message-Passing Programs in Networks




Actors: Scalable Concurrency

Large-scale concurrent systems such as Twitter, LinkedlIn,
Facebook Chat are written in actor languages and frameworks.

Facebook
“[T]he actor model has worked really well for us, and we
wouldn’t have been able to pull that off in C++ or Java.
Several of us are big fans of Python and | personally like
Haskell for a lot of tasks, but the bottom line is that,
while those languages are great general purpose
languages, none of them were designed with the actor
model at heart.” —Facebook Engineering !

YMttps://www.facebook.com/notes/facebook-engineering/
chat-stability—-and-scalability/51412338919
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Actors: Scalable Concurrency Il

Large-scale concurrent systems such as Twitter, LinkedlIn,
Facebook Chat are written in actor languages and frameworks.

“When people read about Scala, it's almost always in the
context of concurrency. Concurrency can be solved by a
good programmer in many languages, but it's a tough
problem to solve. Scala has an Actor library that is
commonly used to solve concurrency problems, and it
makes that problem a lot easier to solve.” — Alex Payne,
“How and Why Twitter Uses Scala’?

nttp://blog.redfin.com/devblog/2010/05/how_and_why_
twitter_uses_scala.html
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Some Actor Languages and Frameworks

» Erlang: web services, telecom, Cloud Computing

» E-on-Lisp, E-on-Java: P2P systems

» SALSA (UIUC/RPI), Charm++ (UIUC): scientific computing
> Ptolemy (UCB): real-time systems

> ActorNet (UIUC): sensor networks

» Scala (EPFL; Typesafe): multicore, web, banking..

» Kilim (Cambridge): multicore and network programming

» Orleans; Asynchronous Agents Library (Microsoft): multicore
programming, Cloud Computing

» DART (Google): Cloud Computing



Converting Shared-Memory Programs to Message Passing

» Manual conversion to use message passing requires
understanding concurrency semantics of programs

» how locking is used to uphold data structure invariants
» how thread interference is avoided
» Many different “correct” conversions are possible—but finer
granularity gives more concurrency



Converting Shared-Memory Programs to Message Passing

Our approach

1. Use runtime monitoring to infer concurrency semantics in
terms of data-centric synchronization requirements.

2. Encapsulate objects inside message-passing actors based on
synchronization analysis.



Converting Shared-Memory Programs to Message Passing

Our approach

1. Use runtime monitoring to infer concurrency semantics in
terms of data-centric synchronization requirements.

2. Encapsulate objects inside message-passing actors based on
synchronization analysis.



Java Class With Control-Centric Synchronization

class ArrayList {
int size;
Object[] entries;

Object get (int 1) {
synchronized (lock) {
if (0 <= 1 && 1 < this.size) {
return this.entries[i];
} else ({
return null;
}
}
}

void addAll (ArrayList o) {
synchronized (lock) {
this.size += o.size;
}
/*... copy elements ...x/
}
}



Java Class Annotated for Data-Centric Synchronization

class ArrayList {
atomicset L;
atomic (L) int size;
atomic (L) Object[] entries;

Object get (int 1) {
if (0 <= 1 && 1 < this.size) {
return this.entries[i];
} else {
return null;
}
}

void addAll (unitfor (L) ArrayList o) {
this.size += o.size;
/*... copy elements ...x/
}
}



Elements of Data-Centric Synchronization

Atomic Set

Group of fields in a class
connected by a
consistency invariant

Unit of Work

Method that preserves the
invariant when executed
sequentially

Alias

Combines atomic sets

Example
In the arrayrist class:
» Invariant: entriesri] valid if
i < size
» Atomic set

L ZZ{ size, entries }

Example
In the arrayrist class:

» Instance methods are units of
work for all atomic sets of the
object

> addAll (ArrayList) iS a unit of
work for the other list's atomic
set L



Converting a Program to use Atomic Sets Requires
Understanding its Concurrency Structure

Must understand old synchronization to convert it!

Conversion Experience of Dolby et al. [TOPLAS, 34(1):4,
2012]:

> Takes several hours for rather simple programs
> 2 out of 6 programs lack synchronization of some classes

> 2 out of 6 programs accidentally introduced global locks

Our Algorithm
Avoid conversion errors by automatically determining annotations
from program traces using Bayesian probabilistic inference



Synopsis of our Algorithm for Probabilistically
Inferring Atomic Sets, Aliases, and Units of Work

Assumptions about Input Programs

» Methods perform meaningful operations (convey intent)

» Data fields that a method accesses are likely connected by
invariant

Algorithm Idea

» Observe which pairs of fields a method accesses atomically
and their distance in terms of basic operations

» This is (Bayesian) evidence that fields are connected through a
semantic invariant

» Store current beliefs for all field pairs in affinity matrices



Analysis Supports Indirect Field Access and Access Paths

Indirect Access and Distance

v

High-level semantic operations use low-level operations

> E.g., get () might call getsize () instead of accessing field size

v

Propagate observed access to caller's scope

v

Quantify directness of access as distance

Access Paths

> Methods traverse the object graph
» Track access paths instead of field names

> Example: this.urls.size



Bayes's Inversion Formula

Bayesian Inference Variables
H: “f and g are connected through an invariant” [Hypothesis]
ex: “f, g accessed (non-)atomically with distance d” [evidence]

Consider a sequence of observations eq,...,e, w.r.t. f and g.
Want to know probability that H holds given eq, ..., ey, i.e.,

P(e1,...,en|H) P(H)
P(e1,...,en)

P(Hlei,...,en) =



Likelihood Ratios and Belief Updating

P(Hlet,...,es)  P(er,...,eq|H) 5 P(H)
P(—Hlei,...,en)  P(ei,...,en—H) P(—H)
updated info = info from observations x original info

posterior odds = likelihood ratio X prior odds
O(Hle1,...,en) = L(er,...,en|H) x O(H)



Conditional Independence

If e1,...,e, are conditionally independent given H, we can write
n
P(er, ... enlH) = ] P(exlH)
k=1

and similarly for =H, whereby

n

O(Hlex, ... &) = O(H) [ L(ex|H)
k=1

Adding one more piece of evidence e,+1, we get
O(H|e1,...,en ent1) = L(ent1|H) O(Hler, ..., en)

Hence, if we have independence, know O(H), and can compute
L(ex|H), we can update odds on-the-fly when observing!



Conditional Independence

» Coarse-grained hypothesis space: HU -H

» With conditional independence, e, ..., e, should depend only
on hypothesis, not on systematic external influence
» However, we have at least the following external factors:

» workload
» scheduler

Mitigating Dependencies

» Working assumption: good workload and long executions
minimize external influence
» Safe to include f, g in atomic set when there is no invariant...

> ...but may result in coarser-grained concurrency



Mapping Observations to Likelihoods

» Given access observation ey for fields f and g with operation
distance di, need to compute L(ex|H)

» L(ex|H) should increase as di decreases up to some
maximum, after which it is flat

> L(ex|H) should decrease as d increases down to some
minimum, after which it is flat

likelihood ratio

distance



Advantages of On-the-Fly Bayesian Inference

> Likelihoods incorporate scope and distance of observations

> Beliefs can be revised by new evidence, and thus improve with
longer executions

» Analysis becomes robust and insensitive to outlier observations

» Size of observation data is in the size of the codebase, not
size of execution

» Infers aliases similarly to atomic sets, which is hard to do
statically



Data-Centric Synchronization Inference Toolchain

start —>‘ Program ] [Workload ’

Aliases

Instr. Bytecode }—»[Affinity matrices

-
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Actorizing Programs Annotated with Atomic Sets

» Key property: messages (method calls) to actors are
processed one-at-a-time
» Fields in one atomic set should not span two actors at runtime
» When object instances are created:
> instances of class Thread end up in separate actor
> instances with non-aliased atomic sets end up in separate actor
> instances with aliased atomic sets end up inside same actor
» Synchronization (two-phase commit) needed to handle some

unitfor declarations!



Conversion Approach in Practice

tool ,
Program Annotations

Annotated Message-Passing Program Using
-
Program Program Message-Passing Library




Conversion Example

class DownloadManager {
// Atomic access ensured by monitors
ArrayList urls;
public synchronized URL getNextURL () {
if (this.urls.size() == 0) return null;
URL url = (URL) this.urls.get (0);
this.urls.remove (0);
announceStartInGUI (url) ;
return url;
}
VA Y4
}
class DownloadThread extends Thread {
DownloadManager manager;

public void run() {
URL url;
while ((url = this.manager.getNextURL()) != null) {

download (url); // Blocks while waiting for data
}
}
VA Y4



Conversion Example, continued

public class Download {
public static void main (String[] args) {
DownloadManager manager = new DownloadManager () ;
for (int i = 0; i < 31; i++) {
manager .addURL (new URL ("http://www.example.com/f" + 1));
}
DownloadThread tl new DownloadThread (manager) ;
DownloadThread t2 = new DownloadThread (manager) ;
tl.start();
t2.start ();



Conversion Example, continued

class DownloadManager {
atomicset U;
atomic (U) ArrayList urls|L=this.U]|;
public URL getNextURL() {
if (this.urls.size() == 0) return null;
URL url = (URL) this.urls.get (0);
this.urls.remove (0);
announceStartInGUI (url) ;
return url;
}
VA Y4
}
public class DownloadThread extends Thread {
DownloadManager manager;

public void run() {
URL url;
while ((url = this.manager.getNextURL()) != null) {

download (url); // Blocks while waiting for data
}
}
VA Y4



Conversion Example, continued

class DownloadManager implements IDownloadManager ({
ArrayList urls;
public URL getNextURL() {
if (this.urls.size() == 0) return null;
URL url = (URL) this.urls.get (0);
this.urls.remove (0);
announceStartInGUI (url) ;
return url;
}
Jx . K/
}
public class DownloadThread extends Thread implements
IDownloadThread {
IDownloadManager manager;

public void run() {
URL url;
while ((url = this.manager.getNextURL()) != null) {

download (url); // Blocks while waiting for data
}
}
VA Y4



Conversion Example, continued

public class Download {
public static void main(String[] args) {
// Actorized initializations
IDownloadManager manager = new actor DownloadManager () ;
for (int i = 0; 1 < 31; i++) {
manager.addURL (new URL ("http://www.example.com/f" + 1));
}

IDownloadThread tl = new actor DownloadThread (manager) ;
IDownloadThread t2 = new actor DownloadThread (manager) ;
tl.start();

t2.start ();



Future Work

» Runtime monitoring to detect specification of process/session
types.
Use runtime verification to detect violations of specifications.

v

v

Enforcement of session types through a meta-actors.

How to update specifications? Adaptation problem...

v
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