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Abstract. This document describes the rules and organisation for the
Third International Competition on Runtime Verification (CRV16).
This document is related to work from COST Action ARVI IC1402, sup-
ported by COST (European Cooperation in Science and Technology).

1 Introduction

This document describes the rules and organisation for the Third International
Competition on Runtime Verification (referred to as CRV16). See relevant liter-
ature for information about Runtime Verification e.g. [3, 5].

Aims. During the last decade, many important tools and techniques for Run-
time Verification have been developed and successfully employed. However, it
was observed that there is a general lack of standard benchmark suites and
evaluation methods for comparing different aspects of existing tools and tech-
niques. For this reason, and inspired by the success of similar events in other
areas of computer-aided verification (e.g., SV-COMP, SAT, SMT,CASC), the
First Internal Competition on Software for Runtime Verification (CSRV-2014)
was established [1]. This year the general aims remain the same:

– To stimulate the development of new efficient and practical runtime verifi-
cation tools and the maintenance of the already developed ones.

– To produce benchmark suites for runtime verification tools, by sharing case
studies and programs that researchers and developers can use in the future
to test and to validate their prototypes.

– To discuss the metrics employed for comparing the tools.
– To compare different aspects of the tools running with different benchmarks

and evaluating them using different criteria.
– To enhance the visibility of presented tools among different communities

(verification, software engineering, distributed computing and cyber secu-
rity) involved in monitoring.

History. For the previous two iterations of the competition see [1, 2, 4]. The
design of the first competition was described in [1] with full results and reflection
appearing in [2]. The design of the second competition was described in [4]. In
the previous two years partial results were reported at the Runtime Verification
conference (held in September) however full results were only reported later for
timing reasons.



Organisers. This year the competition will be organised by Yliés Falcone, Sylvain
Hallé and Giles Reger. Yliés has helped organise the competition in the previ-
ous two years and co-founded the competition with Ezio Bartocci. Giles Reger
entered in 2014 and was an organiser in 2015 and Sylvain is a new addition this
year.

Contact. Please use the email address crv2016@crv.liflab.ca to contact the
organisers. If you contact any of the organisers directly they will either forward
your email to this address or reply including this address. However, for most
queries it is likely that the most appropriate form of communication will be via
the Wiki, please see below for details.

This Document. We aim to fully describe all rules and organisation relevant to
this year’s edition of the competition. The document is structured as follows:

– Section 2 gives an overview of the structure of the competition
– Importantly, Section 2.1 describes the proposed timeline, including deadlines
– The competition is divided into four main phases. Sections 3 to 6 describe

these phases in further detail.

2 Overview

The competition will be divided into five parts as follows:

1. Registration (described below) collects information about entrants
2. Benchmark Phase (Section 3). In this phase entrants can submit bench-

marks to be considered for inclusion in the competition. These must conform
to the given rules and will be subject to review by the organisers.

3. Clarification Phase (Section 4). The benchmarks resulting from the pre-
vious phase will be made available to entrants. This phase gives entrants
an opportunity to seek clarifications from the authors of each benchmark.
Only benchmarks that have had all clarifications dealt with by the end of
this phase will be eligible for the next phase.

4. Monitor Phase (Section 5). In this phase entrants will be asked to pro-
duce monitors for the eligible benchmarks. As described later, these must be
runnable via a script on a Linux system and it must be possible to automate
any necessary installations. Submissions must conform to the given rules and
will be subject to review by the organisers.

5. Evaluation Phase (Section 6). Submissions from the previous phase will
be collected and executed, collecting relevant data to compute scores as
described later. Entrants will have been given an opportunity to test their
submissions on the evaluation system so any errors at this point will be scored
negatively. The output produced during evaluation will be made available
after the competition.

Note that it is not necessary to participate in the Benchmark Phase, al-
though doing so may give you an advantage. However, all entrants should take
part in the remaining three phases, including the Clarification Phase.



2.1 Timeline

This year the competition will take place over a shorter period of time. This deci-
sion is based on the observation that in previous years the reason deadlines were
missed was not lack of time, but lack of information and motivation. By keeping
the competition shorter (and less work) we hope to maintain a momentum.

The planned periods and deadlines are as follows:

Event Starts Ends (Deadline)
Registration May 1st June 5th
Benchmark Submission May 1st May 29th
Clarifications June 5th June 12th
Monitor Submission June 19th July 10th
Results August 1st

There is a very hard deadline of August 8th for all results to be finalised
so that they can be included in the proceedings of the Runtime Verification
conference. But the competition needs to finish in plenty of time of this date to
give the organisers time to prepare this submission.

2.2 Registration

Registration should happen at some point before the start of the Clarification
Phase (see Section 2.1 for timings). Entrants wishing to participate in the Bench-
mark Phase should register earlier. If you are unsure whether you want to par-
ticipate feel free to contact the organisers informally with any queries you have.
It is useful to register as early as you can to aid planning.

During registration entrants will be asked for:

– The tool name

– The names of those participating and their email addresses

– A main contact

– Affiliated Institution(s)

– The track(s) being participated in (see below)

– A tool website (if available)

– The implementation language of the tool

– The specification language of the tool i.e. what it uses as specifications

– Relevant references in Bibtex format

– Links to any other supporting information (i.e. reference manual)

Where possible we encourage tools to be open-source but we do not require it.
If there is no publicly available document explaining the specification language
already (e.g. a tool paper) we may ask entrants to write a short document
explaining their specification language as this information will be required to
assess the correctness of submissions.



2.3 Tracks

As in previous years, the competition will consist of three tracks. How these
should be treated in the different phases will be discussed in detail in the relevant
sections. Here we will give a brief overview of the general scope of what is covered
by the competition and then the idea behind each track.

General Scope. There are many activities that could fall under the umbrella
term of runtime verification. Here we describe and defend the current scope of
the competition. Note that we (the general competition community) are open to
suggestions for future iterations.

The general activity we consider is that of taking a trace τ and a specification
ψ and answering the question whether τ satisfies/is a model for/is accepted by
ψ. In some cases the trace τ is taken as a stand-alone artefact and in other cases
it is being generated as a program is running. We restrict our attention to linear
traces (i.e. we do not consider concurrency) and require programs that generate
such traces to be (broadly) deterministic.

Note that our formulation precludes the other, related, activity of finding
multiple matches between the trace and specification describing failure. In all
cases it is sufficient to report failure as soon as it is detected. On a similar
note, we do not restrict ourselves to safety properties, but (for obvious reasons)
require all specification languages to have an interpretation on finite traces (i.e.
one could have bounded liveness).

The Offline Track. This covers the scenario where the trace is collected, stored
in a log file, and then processed offline. We define three acceptable formats for
traces (log files) to be used in benchmarks and can give (some) help to entrants
in extending their tool with parsing code for these formats. In previous years
benchmarks in this track have focussed on parametric, or data-carrying, events.
This year we would like to also encourage participation from those interested
in purely propositional specifications. Note that this track does not (currently)
support notions of time other than as data.

The Online Java Track. This covers a scenario where a Java program is
instrumented to produce events that should be handled by a monitor. In the
past the majority of instrumentation was carried out via AspectJ. We would like
to standardise this where possible. Therefore, benchmark submissions will be
required to include AspectJ instrumentation (again, where possible). Entrants
may use alternative instrumentation techniques in their submissions but we ask
that they justify this.

The Online C Track. This covers a scenario where a C program is run and it
is asked whether a specification holds of that run. Starting this year, the C track
will consist of two sub-tracks, although this is mainly for organisational reasons
and we encourage entrants to participate in both sub-tracks. These are:



1. Generic Specification. The C version of the Java track where some instru-
mentation should abstract the program as a sequence of events to be passed
to a monitor. Instrumentation can be automatic or manual (see the relevant
section).

2. Implicit Specification. This covers implicit properties (such as memory-
safety and out of bounds array access). In this case the trace may also be
implicit (although we note that it theoretically exists).

2.4 Wiki and Server

Following on from last year4, all communication (in the form of submissions,
clarifications etc) will take place via a Wiki and Server. The only communication
that will occur via email will request entrants to refer to the Wiki.

The Wiki can be found at http://crv.liflab.ca/wiki.

Instructions for how to fill in the Wiki should appear on the Wiki itself
and in relevant places throughout this document. We recommend that entrants
bookmark the Wiki and visit it with non-zero frequency to ensure that they
remain aware of any competition-related progress.

Participants will be contacted by the organisers after registration to be given
details of how to log in to the server. If you do not receive such a communication
please contact the organisers. The server will be used both as a repository for all
submitted material and to run the competition. Therefore, there will be a consis-
tent environment that can be used for submission, testing and evaluation. Each
participant will have a directory on the server in which to upload benchmarks
and monitors and to install their tool.

3 Benchmark Submission Phase

This section describes the number of benchmarks we are aiming for, the general
format benchmarks should take and specific information that should be included
for each track. Note that a benchmark exists in a single track only.

3.1 Submitting Benchmarks

Once you have collected together the information for a benchmark submission
as described below it is necessary to do two things:

1. Go to the Wiki (see earlier) and follow the instructions for creating a bench-
mark page (using the appropriate template) in the appropriate track. Then
fill in the necessary information.

2. Upload all relevant files to your directory on the sever under a subdirectory
with the appropriate name

If you do not do these two things then the benchmark has not been submitted.

4 This was trailed last year, generally worked, but was not used correctly by everybody.



3.2 Number of Benchmarks

Feedback from previous iterations of the competition indicated that there were
too many benchmarks and/or too much effort per benchmark. In this iteration
of the competition we are reducing the number of benchmarks with the aim that
the effort required of participants goes down.

We will be aiming for roughly 10 benchmarks per track. These will be decided
on in the next phase. To keep us below this limit we suggest teams do not submit
more than 10

T benchmarks where T is the number of teams in the relevant track.
This value should be apparent after registration. Please contact the organisers
if you are unsure.

We predict that 10
T will be at most 3 i.e. we assume we will have at least

3 participants in each track. Therefore, it is a good idea to ensure that bench-
marks represent a reasonable level of difficulty in terms of monitoring. Note that
the organisers will ensure that no two benchmarks are too similar. Teams are
encouraged to check other submissions.

3.3 General Benchmark Format

A benchmark consists of three parts.

1. The Metadata. Every benchmark requires:
– A name
– A 2-3 sentence description
– At least 1 domain category to help organise benchmarks
• Suggested categories are: Aerospace, Artificial, Concurrency, Finance,

Medical, Software Engineering. Feel free to use your own.
2. The Trace Part. This is track-specific and will be described below (Sec. 3.5

or 3.6)
3. The Property. This is a description of the property being monitored and

should take the same form for all tracks, with the exception of the Implicit
Specification C subtrack (see below). The information required for a
property description is given below (Sec. 3.4).

3.4 Describing Properties

A specification description consists of the following parts:

1. An informal description. This should include
– The context of the property
– The relevant events (their names and parameters, if any)
– The ordering constraints between events that form the property
– Any assumptions that are being made

2. Demonstration traces.
– These can be in an abstract form i.e. a(1).b(2)
– At least 6 examples traces (3 that should be accepted, 3 rejected)



– The traces should be explained in terms of the abstract property, not
the formal description.

– Ideally these traces will be used to highlight edge cases e.g.

• Is the empty trace accepted?
• Does the property assume a certain event can only occur once, what

should happen if this assumption is broken (it is often okay to accept
a bad trace that breaks an assumption).

3. A formal description.

– The specification language should be well-defined and documented.

– The specification should be explained in reasonable detail. It is not nec-
essary to say ‘there are four states and six transitions’ etc. But please
draw attention to usage of any non-standard language features.

– If it is not obvious, please explain why the above demonstration traces
work on this specification.

4. (Optional) A description of the property in First-Order Linear Temporal
Logic

– The idea is to have a single general specification language that is neutral
and (hopefully) more widely understood than individual team’s specific
specification languages.

– This is optional but strongly encouraged. We acknowledge that some
properties may be out of the scope of this language.

– This is the first time we are trying this and welcome feedback.

– See Appendix A for a description of this logic

An Example. Figure 1 gives an example for what could be written for the
commonly used HasNext property. We have used the RuleR language, which
has not participated on the competition previously.

Changes for the Implicit Specification C subtrack. In this subtrack there
is no notion of trace. Therefore, demonstration traces are not required. Instead,
if there is a simple example of snippet code that could be used to demonstrate
good/bad behaviour consider including this. Similarly, providing a description
in First-Order Linear Temporal Logic is unlikely to be appropriate.

3.5 The Trace Part: Offline Track

The trace part for the Offline Track consists of:

1. A trace file (see below for acceptable formats)

2. Trace statistics including the number of each event in the trace

3. If different, an explanation of how concrete events in the trace relate to
abstract events in the property

4. The status of the trace with respect to the provided property



Title: Has Next on Iterators

Informal Description:
This property considers Iterator objects and their correct usage. The property
is drawn from studies considering iterators in the Java standard library (i.e.
java.util.Iterator) but could apply to similar notions of iterators in other languages.
It is assumed that iterators have (at least) the two methods hasNext, returning true if
there are more elements, and next, returning the next element. The property is that,
for every iterator object i, if next is called on i then there must have been at least one
call of hasNext on i returning true since the last call of next or the start of the trace.
There are therefore two events of interest: hasNext(i, r) and next(i) where i is an
iterator and r the boolean result of the hasNext call.
It is assumed that an iterator object can only be created once and that once hasNext

returns false for the first time it will always return false after this point. Such assump-
tions could be checked at a separate property.

Demonstration Traces:
The property accepts the empty trace ε. Other traces that satisfy the property:

hasNext(A, false)
hasNext(A, true).next(A).hasNext(A, true).next(A).hasNext(A, false)
hasNext(A, true).hasNext(B, true).next(A).hasNext(C, true).next(C).next(B)

Traces that do not satisfy the property:

next(A)
hasNext(A, false).next(A)
hasNext(B, true).next(A)

Formal Description:
The following is a specification in the RuleR rule-based language [?].

ruler HasNext{

observes hasNext(obj,bool), next(obj);

always Start {

next(i:obj), !Safe(i) -> Fail;

hasNext(i:obj,r:bool), r -> Safe(i)

}

state Safe(i:obj){ % A ‘state’ rule instance is removed by Ok

next(i) -> Ok;

}

initials Start;

}

The above rules ensure that an instance of the rule Safe(i) will be present whenever
it is safe to call next on iterator i. Therefore, if next(i) is seen and no such instance
exists there is a failure.

First-Order LTL description:
The following gives the property firstly using future-time operators and secondly using
past-time operators:

(∀i : iterator)((¬next(i) U hasNext(i, true)) ∧�(next(i)→ ◦(¬next(i) U hasNext(i, true)))
(∀i : iterator)�(next(i)→ •(¬next(i) S hasNext(i, true)))

Fig. 1. Property Specification for the HasNext property.



Trace formats. At an abstract level, we define traces as finite sequences of
events. An event is an entity that has a name and arguments each of which has
a name and a value i.e. it is a named record of the form:

NAME{

field1 : value1,

...

fieldn : valuen

}

The accepted trace formats are XML, CSV, or JSON format (all following the
official standards for these formats). Below, we illustrate the three formats ac-
cepted for traces, using an_event_name to range over the set of possible event
names, a_field_name to range over the set of possible field names, and a_value

to range over the set of possible runtime values.

– In XML format:

<log>

<event>

<name>an_event_name</name>

<field>

<name>a_field_name</name>

<value>a_value</value>

</field>

<field>

<name>a_field_name</name>

<value>a_value</value>

</field>

</event>

</log>

– In CVS format5, where the spaces are intended and required.

event, a_field_name, a_field_name, a_field_name

an_event_name, a_field_value, a_field_value, a_field_value

an_event_name, a_field_value, a_field_value, a_field_value

Note that we require a single header giving the field name for different events.
This can either name fields arbitrarily (i.e. arg1,arg2 etc) or have as many
columns as field names, leaving some columns blank for some records.

– In JSON format6:

5 Following the standard http://www.ietf.org/rfc/rfc4180.txt
6 Following the standard https://tools.ietf.org/html/rfc7159



an_event_name: {

a_field_name: "a_value",

a_field_name: "a_value"

}

Whilst JSON supports arbitrarily structured values we do not currently
support such events.

Parsing. As these formats comply with official standards it is possible to use
standard parsing libraries. The organisers can provide a Java-based parser and
a tool for translating between the different trace formats.

3.6 The Trace Part: Online Tracks

The trace part for the Online Track consists of a program that produces the
trace. This part in the benchmark should consist of:

1. The source files without instrumentation (see below for instrumentation)

2. Two scripts:

– compile: should compile the unmonitored program

– run: should run the unmonitored program

Please ensure that these scripts do not include instrumentation information

3. Instrumentation information. This might include

– An AspectJ file (in the Java track this is preferred)

– A script to perform automated instrumentation

– A copy of manually instrumented source files (diff should show that
only instrumentation has been added)

Please include an explanation of how the instrumentation relates to the
events in the specification

4. Trace statistics. The number of each event that should be observed at run-
time. Note that this assumes that the program is deterministic. This is ob-
viously necessary for a fair evaluation.

5. (Optional) An trace log (using one of the formats above) of the observed
trace. For short runs this can help ensure that instrumentation has been
applied correctly. However, in many cases it will be inappropriate.

6. The status of the trace captured by the program with respect to
the provided property

Changes for the Implicit Specification C subtrack. For this subtrack
no instrumentation information is required. However, the code should be com-
mented at the point a failure, if any, is expected.



4 Clarification Phase

The purpose of this phase is to ensure that all teams are happy with the bench-
marks before any effort is spent in preparing for them. During this phase the
organisers and teams should check all submitted benchmarks; a checklist appears
below. At the end of the phase a decision will be made on each benchmark as
to whether it will be included in the next phase.

Checklist. Organisers and teams should check the following things:

– Are all relevant parts present i.e.

• Informal description

• Demonstration traces

• Formal description

• Trace file or program package

– Are the events involved clear from the informal description?

– Are any non-trivial demonstration traces explained?

– Is the formal description in a well-defined specification language?

– Do the informal and formal descriptions agree?

– If a first-order LTL specification has been provided does it agree with the
informal and formal descriptions?

– Is the trace file in an acceptable format (for Offline)?

– Have trace statistics been given, do they agree with the trace (for Offline)?

– Do the compile scripts work (for Online)?

– Is instrumentation information clear (for Online)?

– Is the progam deterministic (for Online)?

– Has a verdict been given?

Further to this list please also consider:

– Does the benchmark make sense?

– Is the benchmark non-trivial?

– Is the benchmark sufficiently dissimilar from other benchmarks?

If the answer is ‘no’ to any of these questions we may question the suitability of
the benchmark.

Clarification Requests. If anything is unclear then a clarification request
should be made. There is a section for this at the bottom of each benchmark page
on the Wiki. Organisers will monitor these sections and email teams if they have
any outstanding clarification requests. It is the submitting teams responsibility
to address any requests. Only benchmarks with no outstanding requests at the
end of the phase will be considered for the next phase.



Voting. In some cases the organisers may ask teams to vote on whether a
benchmark is to be included. This could happen for two reasons.

1. There are too many benchmarks

2. A benchmark is contentious with respect to suitability (not correctness)

We hope that this will not be necessary but will explain the planned process if
it is. Each team and each organiser will get one vote (if an organiser is a team
they will not get two votes) and voting will not be anonymous. A majority will
be needed in either direction with the organisers holding the casting votes in the
case of a tie. Only those voting will be considered when measuring the majority.

Final Decision. The final decision about any benchmark lies with the organ-
isers. However, they will try as hard as possible to ensure that all submitted
benchmarks are deemed suitable by the end of this phase.

5 Monitor Submission Phase

This is the phase where teams create monitors for the benchmarks. At the be-
ginning of the phase a list of the relevant benchmarks will be made available on
the Wiki. In this section we describe the output monitors should produce and
the processes for testing and submitting the monitors.

Further Clarification Requests. During this phase it is still okay to make clari-
fication requests but the submitting team is under no obligation to answer the
requests or change the benchmark as these should have been made in the pre-
vious phase. However, the organisers, where possible, will attempt to deal with
any such requests, mediating with the submitting team where relevant.

5.1 Required Outputs

Monitors should output the verdict by printing a status line. This should be

– STATUS: Satisfied if the property is satisfied

– STATUS: Violated if the property is violated

– STATUS: TimeOut if the status is not detected within the time limit

– STATUS: GaveUp if the monitor fails to find the verdict for any reason

If no status line is printed it will be assumed that the status is TimeOut. There-
fore, it is important that these status lines are printed. If no status line is
printed then there will be a penalty even if the correct verdict is
found.



5.2 Optional Outputs

Individual tools may output additional information about the monitoring pro-
cess, available with command-line options. This is encouraged so that output
can be checked and confidence in the results established. The following outputs
are encouraged:

– Number of events processed, with a breakdown of event kind (option -events);
– Reason for violations or satisfaction i.e. number of events after which a vi-

olation occurs, the event at which the violation occurred, variable bindings
that relate to the violation (option -witness).

– The trace of events processed by the monitor (option -trace).

5.3 Testing and Submitting Monitors

The same server that is being used to upload benchmarks and monitors to will
be used for evaluation. Therefore, if you test that your submissions work on this
machine then they should work during evaluation. After submission any errors
will be scored negatively.

As previously noted, the organisers should have sent you login details for the
server after registration. If this has not happened please contact them directly.

What needs to be uploaded for benchmarks depends on whether the bench-
mark belongs to an offline or online track, as explained later.

Tool installation. As evaluation will be carried out on the sever you will need
to install your tool here. This may just require uploading the relevant jar file
or may involve compiling etc. At the end of this phase the server will be frozen
so it is important that the version of the tool you want evaluated is the version
that is installed in your directory on the server at the end of this phase.

Offline Benchmark packages. For the offline track we require a single script
for all benchmarks that takes two inputs:

1. The name of the benchmark. This should be the name given on the Wiki
in CamelCase e.g. if the name is “Very interesting property“ the name here
will be VeryInterestingProperty.

2. The name of the trace file.

The script should then run the monitor for this benchmark on the given trace
file. This will allow the organisers to automatically generate the inputs necessary
for evaluation.

Online Benchmark packages. For the online tracks (Java and C) a bench-
mark package should be submitted per benchmark consisting of:

– A script setup.sh to setup the benchmark e.g. perform automated instru-
mentation



– A script run.sh to run the monitored program
– Either the original sources or suitably manually instrumented sources

Where possible, the instrumentation described in the benchmark should be used
in the submission.

6 Evaluation Phase

In this section we describe the evaluation phase.

6.1 Running Submitted Monitors

Experiments will be run on the shared sever. It is important that all teams
have tested their submissions on this server. Anything that fails to run during
evaluation will be scored accordingly.

Details of the machine will be provided later. If you have particular require-
ments it is very important that these are made clear as soon as possible.

6.2 Calculating Scores

Let N be the number of teams participating in the considered track and L be the
total number of benchmarks in that track. The maximal number of experiments
for the track is N × L. That is, each team has the possibility to compete on
a benchmark. Then, for each tool Ti (1 ≤ i ≤ N) w.r.t. each benchmark Bj
(1 ≤ j ≤ L), we assign three different scores:

– the correctness score Ci,j ,
– the overhead score Oi,j , and
– the memory utilization score Mi,j .

In case of online monitoring (Java and C tracks), let Ej be the execution time of
benchmark Bj (without monitor). Note, in the following, to simplicity notation,
we assume that all participants of a track want to compete on benchmark Bj .
Participants can of course decide not to qualify on a benchmark of their track.
In this case, the following score definitions can be adapted easily.

Correctness Score. The correctness score Ci,j for a tool Ti running a bench-
mark Bj is calculated as follows:

– Ci,j = 0, if the property associated with benchmark Bj cannot be expressed
in the specification language of Ti.

– Ci,j = −10, if in case of online monitoring, the property can be expressed,
but the monitored program crashes.

– Ci,j = −5, if, in case of online monitoring, the property can be expressed
and no verdict is reported after 10× Ej .



– Ci,j = −5, if, in case of offline monitoring, the property can be expressed,
but the monitor crashes.

– Ci,j = −5, if the property can be expressed, the tool does not crash, and the
verification verdict is incorrect.

– Ci,j = 10, if the tool does not crash, it allows to express the property of
interest, and it provides the correct verification verdict.

Note that, in case of a negative correctness score, there is no evaluation w.r.t.
the overhead and memory-utilization scores for the pair (Ti, Bj).

Overhead Score. The overhead score Oi,j , for a tool Ti running benchmark
Bj , is related to the timing performance of the tool for detecting the (unique)
verdict. For all benchmarks, a fixed total number of points O is allocated when
evaluating the tools on a benchmark. Thus, the scoring method for overhead
ensures that

N∑
i=1

L∑
j=1

Oi,j = O.

The overhead score is calculated as follows. First, we compute the overhead index
oi,j , for tool Ti running a benchmark Bj , where the larger the overhead index
is, the better.

– In the case of offline monitoring, for the overhead, we consider the elapsed
time till the property under scrutiny is either found to be satisfied or violated.
If monitoring (with tool Ti) of the trace of benchmark Bj executes in time
Vi, then we define the overhead as

oi,j =

{
1
Vi

if Ci,j > 0,

0 otherwise.

– In the case of online monitoring (C or Java), the overhead associated with
monitoring is a measure of how much longer a program takes to execute due
to runtime monitoring. If the monitored program (with monitor from tool
Ti) executes in Vi,j time units, we define the overhead index as

oi,j =


N
√∏N

l=1 Vl,j

Vi,j
if Ci,j > 0,

0 otherwise.

In other words, the overhead index for tool Ti evaluated on benchmark Bj
is the geometric mean of the overheads of the monitored programs with all
tools over the overhead of the monitored program with tool Ti.

Then, the overhead score Oi,j for a tool Ti w.r.t. benchmark Bj is defined as
follows:

Oi,j = O × oi,j∑N
l=1 ol,j

.

For each tool, the overhead score is a harmonization of the overhead index so
that the sum of overhead scores is equal to O.



Memory-Utilization Score. The memory-utilization score Mi,j is calculated
similarly to the overhead score. For all benchmarks, a fixed total number of
points O is allocated when evaluating the tools on a benchmark. Thus the scoring
method for memory utilization ensures that:

N∑
i=1

L∑
j=1

Mi,j = M.

First, we measure the memory utilization index mi,j for tool Ti running a bench-
mark Bj , where the larger memory utilization index, the better.

– In the case of offline monitoring, we consider the maximum memory allo-
cated during the tool execution. If monitoring (with tool Ti) of the trace of
benchmark Bj uses a quantity of memory Di, then we define the overhead
as:

mi,j =

{
1
Di

if Ci,j > 0,

0 otherwise,

That is, the memory utilization index for tool Ti evaluated on benchmark Bj
is the geometric mean of the memory utilizations of the monitored programs
with all tools over the memory utilization of the monitored program with
tool Ti.

– In the case of online monitoring (C or Java tracks), memory utilization
associated with monitoring is a measure of the extra memory the monitored
program needs (due to runtime monitoring). If the monitored program uses
Di, we define the memory utilization as

mi,j =


N
√∏N

l=1Dl,j

Di,j
if Ci,j > 0,

0 otherwise.

Then, the memory utilization score Mi,j for a tool Ti w.r.t. a benchmark Bj is
defined as follows:

Mi,j = M × mi,j∑N
l=1ml,j

.

Final Score. The final score Fi for tool Ti is then computed as follows:

Fi =

L∑
j=1

Si,j

where:

Si,j =

{
Ci,j if Ci,j ≤ 0,
Ci,j +Oi,j +Mi,j otherwise.

For the results reported in the next section, we set O = C = M = 10, giving the
same weight to the correctness, overhead, and memory-utilization scores.



6.3 Announcing Results

Results will be announced initially to the participating teams at the end of the
evaluation phase. There will then be a short time for any team to query the
results. Timings and outputs from all experiments will be made available.

The final results will then be announced at the Runtime Verification confer-
ence.
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A First Order Linear Temporal Logic

This year we are asking teams to consider also providing a specification of their
properties in first-order linear temporal logic. In this appendix we motivate this
decision and describe what we mean by this logic.

Important Note
Whilst this appendix gives a formal description of a general notion of first order
linear temporal logic this is just for guidance. We haven’t sanity-checked these
definitions thoroughly. As we describe below, the main idea is to be able to write
something generally understandable to those comfortable with first-order logic
and linear temporal logic.

A.1 Brief Motivation

In general within the RV community, and in previous iterations of this com-
petition, it has been observed that there is a lack of coherence in specification
languages. Most tools use their own specification language and little is under-
stood about how, in some cases very different, specification languages are related.
This has an additional issue that benchmarks used by one tool are not readily
usable by another tool. One of the aims of the competition is to bring more
coherence to the area.

We note that some may see the development of new specification languages
as a major component of runtime verification research. Indeed, activities such as
the extension of languages with new features, exploration of notions of usability,
adoption of domain-specific concepts, introduction of language-features allowing
for optimisation of the monitoring process, and others are all valid research
activities. However, we argue that it is still useful to have a common specification
language that is sufficiently expressive to capture most of the properties we want
to write. It is not clear what such a language should look like. To help address
this question we are trying to use a single common language to describe all
specifications submitted to this competition. Hopefully this will shed some light
on whether this particular language would be suitable, and what issues we need
to consider when developing a common language.

Therefore, we propose a general first-order discrete linear-time temporal logic
with past and future operators and finite trace semantics.

We chose temporal logic as it is commonly used in runtime verification and
is abstract enough to allow reasonably concise specifications (compared to, say,
state machines). The language had to be first-order to capture parametric or
first-order properties. We allow past and future operators to aid readability of
specifications. Finite trace semantics are necessary for the nature of runtime
verification in general. Note that we do not provide a monitoring algorithm, the
aim is to perform specification in this language only.



A.2 The Syntax

We begin by introducing the necessary syntax.

Definition 1 (Signature). A signature (F ,P, Σ, π,S, γA, γR,=) consists of

– A finite set of function symbols F ,

– A finite set of predicate symbols P,

– A finite set of event names Σ

– An arity function π : (F ∪ P ∪Σ)→ N0,

– A finite sort of sorts S,

– Two sorting functions γA : (F ∪ P ∪ Σ) × N → S and γR : F → S with
γA giving sorts to the arguments of functions, predicates and events and γR
giving sorts to the results of a function

– A special equality symbols =

A signature is well-formed if F , P and Σ are disjoint. This allows the arity
function π, which assigns arities to each of the symbols, to be well-defined. If a
symbol s has arity n (i.e. σ(s) = n) we call it n-ary. We separate event names
and predicate names so that we can treat them differently. However they will
be used in a similar way. We call zero-arity function symbols constants and
zero-arity predicates propositions.

We define the syntax of First-Order Linear Temporal logic assuming a sig-
nature and an infinite set of variables V such that variables are distinct from
previously introduced symbols.

Definition 2 (Term). Terms are inductively defined. A term is either a vari-
able x, a constant function symbol c or an n-ary function f applied to n terms
t1, . . . , tn.

Definition 3 (Formula). Formulas are inductively defined as

(ϕ1) | true | q | p(t1, . . . , tn) | t1 = t2 | ¬ϕ1 | ϕ1 ∧ ϕ2 | (∀x : s)(ϕ1) |
◦̂ϕ1 | ϕ1 W ϕ2 | •̂ϕ1 | ϕ1 B ϕ2 | e | e(t1, . . . tn)

where ti are terms, q is a proposition, p is an n-ary predicate symbol, ϕi are
formulas, x is a variable, s is a sort, and e is an event name. The temporal
operator ◦̂ is read as weak next, W is read as weak-until, •̂ is read as weak last,
and B is read as back-to.

We have chosen to use the weak operators as they make the finite-trace
semantics easier to define. As usual we can define derived operators (including
the strong versions of temporal operators) allowing for nicer specifications.



Definition 4 (Derived Operators). We define the usual derived operators

false = ¬true
ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2)
ϕ1 ⇒ ϕ2 = ¬ϕ1 ∨ ϕ2

ϕ1 ⇔ ϕ2 = (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1)
(∃x : s)(ϕ) = ¬(∀x : s)(¬ϕ)
◦ϕ = ¬◦̂¬ϕ (strong-next) or just (next)
•ϕ = ¬•̂¬ϕ (strong-last) or just (last)
�ϕ = ϕ W false (always)
♦ϕ = ¬ � ¬ϕ (eventually)
�ϕ = ϕ B false (always before)
�ϕ = ¬ � ¬ϕ (previously)
ϕ1 U ϕ2 = (ϕ1 W ϕ2) ∧ ♦ϕ2 (until)
ϕ1 S ϕ2 = (ϕ1 B ϕ2) ∧ �ϕ2 (since)
ϕ1 R ϕ2 = ¬(¬ϕ1 U ¬ϕ2) (release)

Next we introduce some properties of formulas important for their semantics.

Definition 5 (Closed Formulas). A variable is bound in a formula if it ap-
pears underneath a quantifier binding it. A formula is closed if all variables are
bound. This is a standard definition.

Definition 6 (Well-Sorted). It should be obvious that is possible to define a
notion of well-sortedness for closed formulas using the sorting functions γA and
γR and the sort bindings for variables. We do not give this here but assume that
all formulas are well-sorted.

Definition 7 (Precedence). Unary operators have higher precedence over bi-
nary operators. Operators with the same arity have the same precedence, there-
fore parenthesis are required to remove ambiguity.

A.3 The Semantics

We introduce the semantics of the formulas.

Definition 8 (Structures and Interpretations). A structure interprets func-
tion and predicate symbols and events. An interpretation (D, τ) consists of a do-
main function D and and a finite sequence of structures τ . The domain function
maps sorts from a signature to (finite or infinite) sets of sorted domain elements.
Each structure ∆ interprets symbols with respect to the domain function.

– A function symbol f is interpreted as a function ∆(f) in D(γA(f, 1))× . . .×
D(γA(f, π(f)))→ D(γR(f))

– A predicate symbol p is interpreted as a boolean-valued function ∆(p) in
D(γA(p, 1))× . . .×D(γA(p, π(p)))→ {⊥,>}

– An event symbol e is interpreted as a boolean-valued function ∆(e) in D(γA(e, 1))×
. . .×D(γA(e, π(e)))→ {⊥,>}



Note that this definition assumes a fixed domain for sorts. Alternative se-
mantics would allow a changing domain i.e. a different domain at each point in
the sequence. The following definitions would not need to be modified signifi-
cantly to allow for this generalisation. But we think a fixed domain assumption
is reasonable.

We use the following sequence notation. If τ is a sequence then τi is the ith
element of τ where sequences are indexed from 1.

In the following a variable valuation Γ is a finite function (a map) from
variables to elements of a domain. We will assume such valuations are well-
sorted i.e. Γ (x) ∈ D(s) where the sort of x is s.

Definition 9 (Interpretation of Terms). Given a structure ∆ and variable
valuation Γ we can interpret terms as members of a domain. Let us define
(∆,Γ )(t) in the obvious way i.e. inductively as

(∆,Γ )(x) = Γ (x)
(∆,Γ )(c) = ∆(c)
(∆,Γ )(f(t1, . . . , tn)) = ∆(f)((∆,Γ )(t1), . . . , (∆,Γ )(tn))

Next we define what it means for an interpretation to be a model of a first-
order linear temporal formula.

Definition 10 (Semantics (Models)). An interpretation (D, τ) is a model
for a first-order linear temporal logic formula ϕ iff (D, τ), {}, 0 |= ϕ where the
relation |= is inductively defined as follows. For non-temporal operators:

(D, τ), Γ, i |= true
(D, τ), Γ, i |= q If τi(p)
(D, τ), Γ, i |= p(t1, . . . , tn) If τi(p)((τi, Γ )(t1), . . . , (τ1, Γ )(tn))
(D, τ), Γ, i |= t1 = t2 (τi, Γ )(t1) = (τi, Γ )(t2)
(D, τ), Γ, i |= ¬ϕ (D, τ), Γ, i 6|= ϕ
(D, τ), Γ, i |= ϕ1 ∧ ϕ2 (D, τ), Γ, i |= ϕ1 and (D, Γ ) |= ϕ2

(D, τ), Γ, i |= (∀x : s)(ϕ) For every d ∈ D(s) we have (D, τ), Γ ∪ (x 7→ d), i |= ϕ
(D, τ), Γ, i |= e If τi(e)
(D, τ), Γ, i |= e(t1, . . . , tn) If τi(e)((τi, Γ )(t1), . . . , (τ1, Γ )(tn))

And for the temporal operators (separated for ease of reading)

(D, τ), Γ, i |= ◦̂ϕ (D, τ), Γ, i+ 1 |= ϕ if i ≤ |τ | and true otherwise
(D, τ), Γ, i |= ϕ1 W ϕ2 Either

a) For all k ≥ i we have (D, τ), Γ, k |= ϕ1

b) Or there is a j ≥ i such that (D, τ), Γ, j |= ϕ2

and for all i ≤ k < j we have (D, τ), Γ, k |= ϕ1

(D, τ), Γ, i |= •̂ϕ (D, τ), Γ, i− 1 |= ϕ if i > 1 and true otherwise
(D, τ), Γ, i |= ϕ1 B ϕ2 Either

a) For all k ≤ i we have (D, τ), Γ, k |= ϕ1

b) Or there is a j ≤ i such that (D, τ), Γ, j |= ϕ2

and for all j < k ≤ i we have (D, τ), Γ, k |= ϕ1



Finite trace semantics. Note that we have a finite trace semantics, our model
is a finite sequence of structures. We have therefore chosen a certain behaviour
for the temporal operators at the ends of the trace. This is symmetric for future
and past operators. The effect on derived operators is as desired. At the end of
a finite trace we want �ϕ to be true and ♦ϕ to be false, symmetrically at the
beginning of the trace �ϕ should be true and �ϕ should be false.

The semantics of next operators means that other common identities still
hold but with minor alterations i.e.

�ϕ = ϕ ∧ ◦̂�ϕ

♦ϕ = ϕ ∨ ◦♦ϕ

Note that the identify for � uses a weak-next operator as �ϕ should be true at
the end of the trace, whilst the identify for ♦ uses strong-next as ♦ϕ should be
false at the end of the trace.

We note that this is not the only way of dealing with finite traces. One could
view the trace seen so far as a finite prefix of some infinite trace and talk about
possible extensions. Orthogonally, one can introduce multiple verdicts differenti-
ating the possible continuations of the observed trace. We do not consider either
of these ideas here but they are compatible with our general approach.

We make the following simplifying assumption, which is sensible but not
strictly required.

Definition 11 (Constant Interpretation of Non-Events). We assume that
the interpretation of function and predicate symbols is the same throughout the
sequence of structures. Therefore, the only change between structures is the pres-
ence of events. This is why we separated events from predicates and fits our usual
setting of events as observations with functions/predicates as fixed operations.

Note that an alternative way of capturing events would be for event names
to propositional and event arguments to be constants that are interpreted dif-
ferently in each structure. We feel that the current presentation is closer to how
RV systems are normally defined.

A.4 From Traces to Models

The interpretations from the previous section look a bit different from the kinds
of traces we often write. This is mainly because in RV we often (not always)
have an assumption that a single event occurs at each time point. In this setting
a trace can be written as a finite sequence of events. We show how such a trace
can be translated into an Interpretation.

Definition 12 (Event Per Time Point Assumption). Given a trace σ cap-
tured as a finite sequence of events where an event consists of a name and option-
ally a sequence of argument values and a domain D. Let I = (D, τ) where τi is
a structure where the events true in τi are exactly the singleton event appearing
at σi.



Definition 13 (Event Per Time Point Axioms). We note that it may be
necessary/useful to add additional axioms to the logic when the event per time
point assumption is made i.e. one can assume∨

ei∈events

ei

i.e. that at least one event should occur and

∨
ei∈events

ei → ∧
ej∈events/ei

¬ej


Note that this is relatively informal and still requires us to define events.

This requires us to give a domain. We can also show how the domain can be
extracted from the trace. This is the typical approach in much RV work.

Definition 14 (Extracting Domain from Trace). Given a trace σ captured
as a finite sequence of events where an event consists of a name and optionally
a sequence of argument values. Let Dσ be the domain function for σ where, for
each s in S the set Dσ(s) = {di | e(. . . , di, . . .) ∈ σ ∧ γA(e, i) = s}.

This states that if the ith argument of event e is of sort s and value d appears
as the ith element of e in the trace then d is in the domain of s.

In fact this is a slight generalisation of what many RV approaches do as these
approaches often fail to define notions of signature and sorts.

A.5 Including Background Theories

It is common to assume background theories such as Arithmetic. We do not
formalise this notion here. But in general this can be achieved by introducing
interpreted operations to the signature and extending the semantics to interpret
such operations.

For example, one could add the functions +,−, ∗ and predicates ≥,≤ from
arithmetic. Then the set of models for formulas over this extended signature
would also need to satisfy the theory of arithmetic.

A.6 Metric Operators etc

We do not have metric temporal operators in our language or any other kinds
of counting quantifiers or aggregate operators. Many temporal logics for RV do
have these. If you use them they must be explained. If possible also give a version
of the specification without them. Even better, define the operators in terms of
operators defined here!



A.7 ASCII notation

The above symbols are readable but difficult to type in a plaintext document
(such as an email). We introduce an alternative ASCII syntax in the following
(rather informal) grammar.

term := variable | constant | functionName(termList)

atom := eventName

| <eventName>(termList)

| propositionName

| predicateName(termList)

formula := atom

| not(formula)

| formula1 and formula2

| formula1 or formula2

| formula! => formula2

| formula1 <=> formula2

| next formula

| last formula

| strong-next formula

| strong-last formula

| weak-next formula

| weak-last formula

| always formula

| always-been formula /* past-time always */

| eventually formula

| once formula /* past-time eventually */

| formula1 until formula2

| formula1 weakly until formula2

| formula1 since formula2

| formula1 weakly since formula2

| formula1 release formula2

| (forall variable:type)(formula)

| (exists variable:type)(formula)

If you choose to use other syntax it must be explained.

A.8 Examples

We give two simple examples. Future versions of this document may add further
examples.

HasNext. We repeat the HasNext example. This is a standard RV property often
used as a Hello-World property. If you want help with writing any properties then
please contact the organisers.



This can be written as follows

(∀i : iterator) ((¬next(i) W hasNext(i, true))∧
�(next(i)→ ◦(¬next(i) W hasNext(i, true)))

The first part states that we cannot see a next until we have seen the appropriate
hasNext and the second part says that every next cannot be followed by another
next until we have seen the appropriate hasNext. Note the use of W, there is
no requirement to see a hasNext.

It can be more concisely written using past-time operators.

(∀i : iterator)�(next(i)→ •(¬next(i) S hasNext(i, true)))

This quite simply states that for every next there has been no other next since
the last hasNext. Note that strong-last is used, meaning that there must be a
previous point in the trace i.e. next cannot appear on the first step.

Auction Bids. Consider the property that items are listed on an auction web-
site with a minimum amount. After listing, bids on the item must be strictly
increasing and if the item is sold it should be for at least the minimum.

One way of formulating this property in first order linear temporal logic is
as follows. Not how this uses the theory of arithmetic, a mixture of different
quantifications, and past and future temporal operators.

(∀i : item)(∀min : int)

�(list(i,min)→ �

(
(∀a, a′ : int)((a ≤ a′ ∧ bid(i, a))→ �¬bid(a′))
sold(i)→ �((∃a : int)a > min ∧ bid(i, a))

)


