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Real Motivation!

S. Agrawal and B. Bonakdarpour. Runtime Verification of k-safety Hyperproperties

in HyperLTL (CSF 2016).
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Why Alternation-free HyperLTL?

Consider formula
∀π.∃π′.ϕ

To reason about such a formula, we should have all traces.

This cannot be done by runtime techniques only.

Consider formula
∀π.∀π′.ϕ

One can detect violation of such a formula by discovering two traces that
do not satisfy ϕ.
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Presentation outline

1 Finite Semantics for LTL

2 Challenges in RV for HyperLTL

3 Rewriting-based RV Algorithm for Alternation-free HyperLTL Formulas
Identifying the Propositions of Interest
Rewriting-based RV for FLTL

4 Conclusion
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Framework

Definitions

Let AP be a set of atomic propositions and Σ = 2AP be the alphabet.

A word is a sequence w = a0a1 · · · , where each ai (i ≥ 0) is a letter (or
event) in Σ.

The set of all finite (respectively, infinite) words are Σ∗ (respectively, Σω).

For a word w = a0a1 · · · , w i means the denote the suffix aiai+1 · · · .

Example

{p, q} {} {q} {p}
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Finite LTL (FLTL [Manna, Pnueli - 95)

The semantics of Ltl is defined over infinite words.

Finite Ltl

Finite Ltl (Fltl) allows us to reason about finite words for verifying
properties at run time.

FLTL Syntax

The syntax of Fltl is identical to that of Ltl and the semantics is based
on the truth values B2 = {⊥,>}.

FLTL Semantics

The semantics of Fltl for atomic propositions and Boolean operators are
identical to those of Ltl.
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Finite LTL

FLTL Semantics

Let ϕ, ϕ1, and ϕ2 be Ltl formulas, and u = u0u1 · · · un be a finite word.

[u |=F Xϕ] =

{
[u1 |=F ϕ] if u1 6= ε

⊥ otherwise

[
u |=F X̄ϕ

]
=

{
[u1 |=F ϕ] if u1 6= ε

> otherwise

[u |=F ϕ1 Uϕ2] =


> if ∃k ∈ [0, n] : [uk |=F ϕ2] = > ∧

∀l ∈ [0, k) : [ul |=F ϕ1] = >
⊥ otherwise
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FLTL

Example

[u |=F Xp] = > p

[u |=F p U q] = ⊥ p p p p

[u |=F Fp] = ⊥

[u |=F Gp] = > p p p p

FLTL Put into Perspective

Fltl evaluates a property for a finite word regardless of future executions.
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Monitorability

An LTL formula ϕ is monitorable iff

∀u ∈ Σ∗.∃u′ ∈ Σ∗. [uu′ |=F ϕ] ∈ {⊥,>}

Example

Formula GFp is not monitorable.

Formual a U b is monitorable.
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Presentation outline
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Finite Semantics for HyperLTL

For a finite trace t, let t[i , j ] denote the subtrace of t from position i up to
and including position j . And, t[i , ..] denotes t[i , |t| − 1]

Trace assignment function is now Π : V → Σ∗.

We define:

t[i , j ] =

{
ε if i > |t|
t[i ,min(j , |t| − 1)] otherwise
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Finite Semantics for HyperLTL

Finite Semantics for HyperLTL

[
Π |=F

T Xϕ
]

=

{
[Π[1, ..] |=F

T ϕ] if Π[1, ..] 6= ε

⊥ otherwise

[
Π |=F

T X̄ϕ
]

=

{
[Π[1, ..] |=F

T ϕ] if Π[1, ..] 6= ε

> otherwise

[
Π |=F

T ϕ1 Uϕ2

]
=


> if ∃i ≥ 0 : Π[i , ..] 6= ε ∧ [Π[i , ..] |=F

T ϕ2] = > ∧
∀j ∈ [0, i) : [Π[j , ..] |=F

T ϕ1] = >
⊥ otherwise
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Monitorability in HyperLTL

Trace Set Prefix Relation

Let U be a finite set of finite traces and V is a finite or infinite set of
traces, then the prefix relation U ≤ V is defined as

U ≤ V ≡ ∀u ∈ U. (∃v ∈ V . u ≤ v)

Note that V may contain traces that have no prefix in U.

A HyperLTL formula ϕ is monitorable iff

∀M ∈ P∗(Σ∗).∃M ′ ∈ P∗(Σ∗). [MM ′ |= ϕ] ∈ {⊥,>}
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RV of HyperLTL: Challenges

Hyperproperties are more complex than traditional trace properties;
i.e., we need to reason over multiple execution traces.

Monitoring an execution may depend on the evaluation of past and
future executions.

Goal is to develop RV algorithms for alternation-free HyperLTL formulas.

(a subset of k-safety hyperproperties)
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Motivating Example 1

φ = ∀π1.∀π2. aπ1
U bπ2

t1 = a a a b

t2 = a a

Traces π1 and π2 violate the formula (even t2 does not individually
satisfy φ.
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Motivating Example 2

φ = ∀π1.∀π2. aπ1
U bπ2

t1 = a a a a a b

t2 = a a a a b b

t3 = a a b b b b

t4 = a a a b a a

Traces t1, t2, t3, t4, individually satisfy the formula φ.

However, any combination of these traces violates the formula as
satisfaction must happen at the same location in all traces.

We require the information about the index of satisfaction
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Motivating Example 3

φ = ∀π1.∀π2. aπ1
−→ Fbπ2

t1 = d c f

t2 = a e b

Traces t1 and t2, individually satisfy the formula φ.

However, t1 and t2 collectively violate the formula as b never
happened in π1

Progressing through the traces requires information from previous traces
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Motivating Example 4

φ = ∀π1∀π2. G(aπ1
−→ aπ2

)

t1 = a b b a b

t2 = a e c a c

t3 = a a c a a

Traces t1 and t2 satisfy the formula φ.

However, trace t3 violates their agreement; i.e., satisfaction must
happen at the same location in all traces

Trace quantification brings more expressiveness as compared to LTL
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Monitoring HyperLTL: Idea

φ = ∀π1.∀π2. aπ1
U bπ2

t1 = a a a a a b

constraint = X[0,4]¬b ∧ X5b

X[i ,k]ψ represents Xiψ∧ · · · ∧Xkψ

Incoming traces have to satisfy φ and these constraints

t2 = a a a a b b ((((((hhhhhhconstraints

t3 = a a b b b b ((((((hhhhhhconstraints

t4 = a a a b a a ((((((hhhhhhconstraints
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Monitoring HyperLTL: Idea (contd.)

φ = ∀π1.∀π2.∀π3. (aπ1
U bπ2

) U cπ3

t1 = ab a ac ac a b

t2 = a b ab a ac b

t3 = b a ac a a ab

How to generate constraints in this case?

Semantics of U

Π |=T φ1 U φ2 iff ∃i ≥ 0.(Π[i,∞] |=T φ2 ∧
∀j.0 ≤ j < i.Π[j,∞] |=T φ1)

In this formula, the propositions of interest are b and c .

The first satisfaction of c should be at the same index in each trace.

Each satisfaction of b should be agreed upon in all traces.
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Proposed Monitoring Approach

Rewriting-based monitoring for HyperLTL
I Using rewriting for the evaluation and progression of formula with

respect to incoming events
I Generating constraints to ensure the agreement among traces

Hyper-Monitors for HyperLTL
I Using LTL4 (or RV-LTL) with counters to monitors the progress of

each trace
I Using hyper-monitors to find the violation at a given time instant

Both approaches require to identify a set of variables requiring counting in
a given HyperLTL formula (φ)

φ = ∀π1.∀π2.∀π3. (aπ1 U bπ2) U cπ3
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Proposed Monitoring Algorithms: An Overview

Rewriting-based Monitoring for HyperLTL
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Algorithm to Find the set of Propositions of Interest (Γ)

Input: Syntax tree of the HyperLTL formula (ft)
Output: Set Γ
function Γ(ft)
node := root(ft)
V := {} .tracks record of trace quantifiers under the scope of ”U”

If ¬(distinctQuantifiers(all .leaves)) return ({})
match (node) with
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Algorithm to Find the set of Propositions of Interest (Γ)

| (∨):
match (left.node) (right.node) with

| leaf1 leaf2 :
if (leaf1.π 6= leaf2.π)

return ({leaf1 ∨ leaf2})
else

return ({})
end if

Γ(aπ1 ∨ bπ2) = {a ∨ b}

∨

bπ2aπ1
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Algorithm to Find the set of Propositions of Interest (Γ)

| (∨):
match (left.node) (right.node) with

| leaf1 − : return ({leaf1} ∪ Γ(right.node))

Γ(aπ1 ∨ Xcπ2) = {a} ∪ Γ(Xcπ2)

∨

X

cπ2

aπ1
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Algorithm to Find the set of Propositions of Interest (Γ)

| (∨):
match (left.node) (right.node) with

| − leaf2 : return (Γ(left.node) ∪ {leaf2})

Γ((aπ1 U bπ2) ∨ cπ3) =
Γ(aπ1 U bπ2) ∪ {c}

∨

cU

ba
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Algorithm to Find the set of Propositions of Interest (Γ)

| (∨):
match (left.node) (right.node) with

| {∨,¬} {∨,¬} : return (Γ(left.node) Y Γ(right.node))
| − − : return (Γ(left.node) ∪ Γ(right.node))

Y represents logical “OR” operation among the elements of two sets

Γ((aπ1 ∨ bπ2) ∨ (cπ3 ∨ dπ4)) =
Γ(aπ1 ∨ bπ2) Y Γ(cπ3 ∨ dπ4) =
{a ∨ b} Y {c ∨ d} =
{a ∨ b ∨ c ∨ d}

∨

∨

dπ4cπ3

∨

bπ2aπ1
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Algorithm to Find the set of Propositions of Interest (Γ)

| (∨):
match (left.node) (right.node) with

| − − : return (Γ(left.node) ∪ Γ(right.node))

Γ((aπ1 U bπ2) ∨ Xcπ3) =
Γ(aπ1 U bπ2) ∪ Γ(Xcπ3)

∨

X

cπ3

U

bπ2aπ1
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Algorithm to Find the set of Propositions of Interest (Γ)

| (U) :
match (left.node) (right.node) with

| leaf1 leaf2 :
if (V − {leaf2.π} 6= ∅ ∨ leaf1.π 6= leaf2.π)

return ({leaf2})
else

return ({})
end if
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Algorithm to Find the set of Propositions of Interest (Γ)

| (U) :
match (left.node) (right.node) with

| leaf1 leaf2 :
if (V − {leaf2.π} 6= ∅ ∨ leaf1.π 6= leaf2.π)

return ({leaf2})
else

return ({})
end if

| − leaf2 :
if (@x ∈ (left.node).x ∈ {X,U})

return (#� {leaf2})
else

return (Γ(left.node) ∪#� {leaf2})
end if

# indicates that the corresponding variables need to be counted only once
� represents application of unary operators (e.g., ¬,X) to the elements of a set
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Algorithm to Find the set of Propositions of Interest (Γ)

| (U) :
match (left.node) (right.node) with

| leaf1 − :
V ← V ∪ {leaf1.π};

return (Γ(right.node))
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Algorithm to Find the set of Propositions of Interest (Γ)

| (U) :
match (left.node) (right.node) with

| leaf1 − :
V ← V ∪ {leaf1.π};

return (Γ(right.node))
| − − :

if (@x ∈ (left.node).x ∈ {X,U})
return (#� Γ(right.node))

else
return (Γ(left.node) ∪#� Γ(right.node))

end if
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Algorithm to Find the set of Propositions of Interest (Γ)

match (node) with
| (leaf ) : return ({leaf })
| (¬) : return (¬ � Γ(child .node))
| (X) : return (X� Γ(child .node))
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Algorithm to Find Γ: Running Example

φ = ∀π1.∀π2.∀π3X(aπ1 U bπ3 )U

Gc︷ ︸︸ ︷
¬(true U¬cπ2 )

U

¬

U

¬

cπ2

true

X

U

bπ3aπ1
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Algorithm to Find Γ: Running Example

Γ(X(aπ1 U bπ3)) ∪ Γ(¬(trueU¬cπ2))

U

¬

U

¬

cπ2

true

X

U

bπ2aπ1
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Algorithm to Find Γ: Running Example

Γ(X(aπ1 U bπ3))

U

¬

U

¬

cπ2

true

X

U

bπ3aπ1
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Algorithm to Find Γ: Running Example

X� Γ((aπ1 U bπ3))

U

¬

U

¬

cπ2

true

X

U

bπ3aπ1
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Algorithm to Find Γ: Running Example

X� {b} = {Xb}

U

¬

U

¬

cπ2

true

X

U

ba
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Algorithm to Find Γ: Running Example

¬ � Γ((trueU¬cπ2))

U

¬

U

¬

cπ2

true

X

U

bπ3aπ1
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Algorithm to Find Γ: Running Example

¬ � Γ(¬cπ2)

U

¬

U

¬

cπ2

true

X

U

bπ3aπ1
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Algorithm to Find Γ: Running Example

¬ � {¬cπ2} = {c}

U

¬

U

¬

c

true

X

U

bπ3aπ1
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Algorithm to Find Γ: Running Example

φ = ∀π1.∀π2.∀π3X(aπ1 U bπ3 )U

Gc︷ ︸︸ ︷
¬(true U¬cπ2 )

Γ(X(aπ1 U bπ3)) ∪ Γ(¬(trueU¬cπ2))

{Xb} ∪ {c} = {Xb, c}

U

¬

U

¬

cπ2

true

X

U

bπ3aπ1
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Rewriting Algorithm [Havelund, Rosu, 2001]

REWRITE (φ, e)

Input: LTL formula φ, Event e
Output: Formula ψ
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Rewriting Algorithm [Havelund, Rosu, 2001]

REWRITE (φ, e)

match (φ) with
| (φ1 ∨ φ2) :

return (REWRITE (φ1, e) ∨ REWRITE (φ2, e))
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Rewriting Algorithm [Havelund, Rosu, 2001]

REWRITE (φ, e)

match (φ) with
| (φ1 ∨ φ2) :

return (REWRITE (φ1, e) ∨ REWRITE (φ2, e))

φ = (a ∨ b) In-coming event = a
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Rewriting Algorithm [Havelund, Rosu, 2001]

REWRITE (φ, e)

match (φ) with
| (φ1 ∨ φ2) :

return (REWRITE (φ1, e) ∨ REWRITE (φ2, e))

φ = (a ∨ b) In-coming event = a
=⇒ return (REWRITE (a, a) ∨ REWRITE (b, a))
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Rewriting Algorithm [Havelund, Rosu, 2001]

REWRITE (φ, e)

match (φ) with
| (φ1 ∨ φ2) :

return (REWRITE (φ1, e) ∨ REWRITE (φ2, e))

φ = (a ∨ b) In-coming event = a
=⇒ return (REWRITE (a, a) ∨ REWRITE (b, a))

Further steps will return the satisfaction by finding (a � a) ∨ (b � a)
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Rewriting Algorithm [Havelund, Rosu, 2001]

REWRITE (φ, e)

| (φ1 U φ2) :
if(last event(e)) then

return (REWRITE(φ2, e))
else

return (REWRITE(φ2, e) ∨ REWRITE (φ1, e) ∧ (φ1 U φ2)))
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Rewriting Algorithm [Havelund, Rosu, 2001]

REWRITE (φ, e)

| (φ1 U φ2) :
if(last event(e)) then

return (REWRITE(φ2, e))
else

return (REWRITE(φ2, e) ∨ REWRITE (φ1, e) ∧ (φ1 U φ2)))

φ = (a U b) In-coming event = a
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Rewriting Algorithm [Havelund, Rosu, 2001]

REWRITE (φ, e)

| (φ1 U φ2) :
if(last event(e)) then

return (REWRITE(φ2, e))
else

return (REWRITE(φ2, e) ∨ REWRITE (φ1, e) ∧ (φ1 U φ2)))

φ = (a U b) In-coming event = a
=⇒ return (REWRITE (b, a) ∨ (REWRITE (a, a) ∧ (a U b)))
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Rewriting Algorithm [Havelund, Rosu, 2001]

REWRITE (φ, e)

| (φ1 U φ2) :
if(last event(e)) then

return (REWRITE(φ2, e))
else

return (REWRITE(φ2, e) ∨ REWRITE (φ1, e) ∧ (φ1 U φ2)))

φ = (a U b) In-coming event = a
=⇒ return (False ∨ (True ∧ (a U b)))
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Rewriting Algorithm [Havelund, Rosu, 2001]

REWRITE (φ, e)

| (φ1 U φ2) :
if(last event(e)) then

return (REWRITE(φ2, e))
else

return (REWRITE(φ2, e) ∨ REWRITE (φ1, e) ∧ (φ1 U φ2)))

φ = (a U b) In-coming event = a
=⇒ return (False ∨ (True ∧ (a U b)))

Formula has not yet been satisfied/violated

a U b will be used again to find the satisfaction/violation
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Rewriting Algorithm [Havelund, Rosu, 2001]

REWRITE (φ, e)

| (Xφ) :
if(last event(e)) then

return (False)
else

return REWRITE(φ, e)
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Rewriting Algorithm [Havelund, Rosu, 2001]

REWRITE (φ, e)

| (Xφ) :
if(last event(e)) then

return (False)
else

return REWRITE(φ, e)

φ = (Xb) In-coming event = a
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Rewriting Algorithm [Havelund, Rosu, 2001]

REWRITE (φ, e)

| (Xφ) :
if(last event(e)) then

return (False)
else

return REWRITE(φ, e)

φ = (Xb) In-coming event = a
=⇒ return (REWRITE(b, e))
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Rewriting Algorithm [Havelund, Rosu, 2001]

REWRITE (φ, e)

| (Xφ) :
if(last event(e)) then

return (False)
else

return REWRITE(φ, e)

φ = (Xb) In-coming event = a
=⇒ return (REWRITE(b, e))

The next in-coming event will have to satisfy b
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Rewriting Algorithm [Havelund, Rosu, 2001]

REWRITE (φ, e)

| (Xφ) :
if(last event(e)) then

return (False)
else

return REWRITE(φ, e)

φ = (Xb) In-coming event = a
=⇒ return (REWRITE(b, e))

The next in-coming event will have to satisfy b

If a was last event, then violation found.

Implementation of “strong next”
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Rewriting Algorithm [Havelund, Rosu, 2001]

REWRITE (φ, e)

| (φ[e]) :
if(e � φ) then

return (True)
elseif(e 2 φ)

return(False)
| (True) : return (True)
| (False) : return (False)
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Rewriting Algorithm [Havelund, Rosu, 2001]

REWRITE (φ, e)

match (φ) with
| (φ1 ∨ φ2) :

return (REWRITE(φ1, e) ∨ REWRITE(φ2, e))
| (φ1 U φ2) :
if(last event(e)) then

return (REWRITE(φ2, e))
else

return (REWRITE(φ2, e) ∨ REWRITE(φ1, e) ∧ (φ1 U φ2)))
| (Xφ) :
if(last event(e)) then

return (False)
else

return REWRITE(φ, e)
| (φ[e]) :
if(e � φ) then

return (True)
elseif(e 2 φ)

return(False)
| (True) : return (True)

| (False) : return (False)
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Rewriting Algorithm - Example

φ = a U b π = ε
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Rewriting Algorithm - Example

φ = a U b π = a − Event comes in
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Rewriting Algorithm - Example

φ = a U b π = a

φ← REWRITE(φ, a)
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Rewriting Algorithm - Example

φ = a U b π = a

φ← REWRITE(φ, a)
=⇒ return (REWRITE (b, a) ∨ (REWRITE (a, a) ∧ (a U b)))
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Rewriting Algorithm - Example

φ = a U b π = a

φ← REWRITE(φ, a)
=⇒ return (False ∨ (True ∧ (a U b)))
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Rewriting Algorithm - Example

φ = a U b π = a

φ← REWRITE(φ, a)
φ← (a U b)
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Rewriting Algorithm - Example

φ = a U b π = aa − Event comes in
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Rewriting Algorithm - Example

φ = a U b π = aa

φ← REWRITE(φ, a)
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Rewriting Algorithm - Example

φ = a U b π = aa

φ← REWRITE(φ, a)
=⇒ return (REWRITE (b, a) ∨ (REWRITE (a, a) ∧ (a U b)))
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Rewriting Algorithm - Example

φ = a U b π = aa

φ← REWRITE(φ, a)
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Rewriting Algorithm - Example

φ = a U b π = aa

φ← REWRITE(φ, a)
φ← (a U b)
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Rewriting Algorithm - Example

φ = a U b π = aab − Event comes in
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Rewriting Algorithm - Example

φ = a U b π = aab

φ← REWRITE(φ, b)
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Rewriting Algorithm - Example

φ = a U b π = aab

φ← REWRITE(φ, b)
=⇒ return (REWRITE (b, b) ∨ (REWRITE (a, b) ∧ (a U b)))
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Rewriting Algorithm - Example

φ = a U b π = aab

φ← REWRITE(φ, b)
=⇒ return (True ∨ (False ∧ a U b))

B. Bonakdarpour (McMaster University) Part II: Runtime Verification for Alternation-free HyperLTLSeptember 27, 2016 29 / 42



Rewriting Algorithm - Example

φ = a U b π = aab

φ← REWRITE(φ, b)
φ← True
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Rewriting Algorithm - Example

φ = a U b π = aab

φ← REWRITE(φ, b)
φ← True

Formula is satisfied!
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Rewriting-based Monitoring for HyperLTL: Challenges

Progressing through the traces requires information from previous
traces
φ = ∀π1.∀π2. aπ1 −→ Fbπ2

Tracking the satisfaction of sub-formulas is required

Constraints generation is dynamic depending upon the agreement
amongst traces
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Rewriting-based Monitoring: Proposed Approach

Find the set of variables which require counting (Γ)

Use rewriting to check the satisfaction and progress of the formula

Generate the constraints (required for trace agreement) for each
incoming event

These steps are performed for all incoming traces
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Rewriting-based Monitoring for HyperLTL

ϕ Γ

ti

violation

Variables requiring counting  

true

LTL-Rewriting

ϕ'

Constraints

Ci

false

Constraint 
generation
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Rewriting-based Monitoring

Input: HyperLTL formula φ, Γ, set of incoming traces M
Output: λ = {⊥, ?}
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Rewriting-based Monitoring

Input: HyperLTL formula φ, Γ, set of incoming traces M
Output: λ = {⊥, ?}

1 while (1) do
2 for each m ∈ M do
3 Cm ← ConstraintsHandler (φ, Γ) .Generate constraints
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Rewriting-based Monitoring

Input: HyperLTL formula φ, Γ, set of incoming traces M
Output: λ = {⊥, ?}

1 while (1) do
2 for each m ∈ M do
3 Cm ← ConstraintsHandler (φ, Γ) .Generate constraints

4 Take a snapshot for counters C = {C1,C2, · · ·,Cm} at time instant

5 β = SAT(
∧M

m=1(Cm)) .Check the satisfiability of constraints
6 if (β = false) then
7 λ := ⊥
8 return (λ)
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Rewriting-based Monitoring
1 ConstraintsHandler (φ, Γ)
2 if (φ = φ1 ∨ φ2) then
3 ψ1 ← ConstraintsHandler (φ1, Γ(φ1))
4 ψ2 ← ConstraintsHandler (φ2, Γ(φ2))
5 if (ψ1 = False ∧ ψ2 = False) then
6 return (False)

7 else if (ψ1 = False) then
8 return (ψ2)

9 else if (ψ2 = False) then
10 return (ψ1)
11 else
12 return (ψ1 ∧ ψ2)

13 else
14 if (φ := φ1 U φ2 ∧ ((φ1 := φL ∨ φR) ∧

distinctQuantifiers(φL, φR) )) then
15 ψ1 ← ConstraintsHandler (φLU φ2, Γ)
16 ψ2 ← ConstraintsHandler (φRU φ2, Γ)
17 if ψ1 = False ∧ ψ2 = False then
18 return (False)

19 else if ψ1 = False then
20 return ((φRU φ2) ∧ ψ2)

21 else if ψ2 = False then
22 return ((φLU φ2) ∧ ψ1)

23 else
24 return (((φRU φ2) ∨ (φRU φ2)) ∧ ψ1)

25 else
26 r ← ConstraintsTraces(Γ,φ)
27 if (r = False) then
28 return False

29 else
30 return r
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Rewriting-based Monitoring

1 ConstraintsHandler (φ, Γ)
2 if (φ = φ1 ∨ φ2) then
3 ψ1 ← ConstraintsHandler (φ1, Γ(φ1))


- Divide φ into subformulas
- Seperate variables from Γ

4 ψ2 ← ConstraintsHandler (φ2, Γ(φ2))
5 if (ψ1 = False ∧ ψ2 = False) then
6 return (False) .Return False if both formulas are False

7 else if (ψ1 = False) then
8 return (ψ2)

9 else if (ψ2 = False) then
10 return (ψ1)


- Constraints refinement

11 else
12 return (ψ1 ∧ ψ2)
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Rewriting-based Monitoring

1 ConstraintsHandler (φ, Γ)
2 else
3 if (φ := φ1 U φ2 ∧ ((φ1 := φL ∨ φR) ∧

distinctQuantifiers(φL, φR) )) then
4 ψ1 ← ConstraintsHandler (φL U φ2, Γ)


- Left side of Until is disjunction with different quantifiers
- Divide to find which side of disjunction finds satisfaction

5 ψ2 ← ConstraintsHandler (φR U φ2, Γ)
6 if (ψ1 = False ∧ ψ2 = False) then
7 return (False)

8 else if (ψ1 = False) then
9 return ((φR U φ2) ∧ ψ2)


- Constraints are refined according to
the satisfaction of disjunction

10 else if (ψ2 = False) then
11 return ((φL U φ2) ∧ ψ1)

12 else
13 return (((φL U φ2) ∨ (φR U φ2)) ∧ ψ1)

14 else
15 r ← ConstraintsTraces(Γ,φ)
16 if (r = False) then
17 return False


- Generate Constraint for each trace

18 else
19 return r
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Rewriting-based Monitoring - Algorithm for Constraints
1 ConstraintsTraces(Γ: Set of variables require counting, φ)
2 Γ′ ← Γ
3 for each a ∈ Γ do
4 ia ← 0

5 i ← 0
6 r ← True
7 φ′ ← quantifier-elimination(φ) .Eliminate trace quantifiers
8 while getEvent (e) do
9 φ′ ← REWRITE (e, φ′)

10 if (φ′ = False) then
11 return φ′

12 for (each a ∈ Γ s.t. e � a) do
13 if (a = a′#) then

14 Γ← Γ \ a

15 r ← r ∧ Xia
16 if a ∈ Γ′ then
17 Γ′ ← Γ′ \ a

18 if (i > 0) ∧ (ia 6= i) then

19 r ← r ∧ X[ia,i−1]¬a

20 ia ← i + 1

21 if (φ′ = True) then
22 Break

23 for (each a ∈ Γ s.t. a = Xa′) do
24 Γ← (Γ \ {a}) ∪ {a′}
25 Γ′ ← (Γ′ \ {a}) ∪ {a′}
26 ia + +

27 i + +

28 for each b ∈ Γ′ do
29 r ← r ∧ G¬b

30 return r
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12 if (a = a′#) then

13 Γ← Γ \ a

14 r ← r ∧ Xia
15 if a ∈ Γ′ then
16 Γ′ ← Γ′ \ a

17 if (i > 0) ∧ (ia 6= i) then

18 r ← r ∧ X[ia,i−1]¬a

19 ia ← i + 1

20 if (φ′ = True) then
21 Break

22 for (each a ∈ Γ s.t. a = Xa′) do
23 Γ← (Γ \ {a}) ∪ {a′}
24 Γ′ ← (Γ′ \ {a}) ∪ {a′}
25 ia + +

26 i + +
27 return r

B. Bonakdarpour (McMaster University) Part II: Runtime Verification for Alternation-free HyperLTLSeptember 27, 2016 36 / 42



Rewriting-based Monitoring - Algorithm for Constraints
1 ConstraintsTraces(Γ: Set of variables require counting, φ)
2 Γ′ ← Γ
3 for each a ∈ Γ do
4 ia ← 0


- Set counter and state variables here
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7 φ′ ← quantifier-elimination(φ) .Eliminate trace quantifiers
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9 φ′ ← REWRITE (e, φ′)

10 if (φ′ = False)


- Events of a trace come in
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1 ConstraintsTraces(Γ: Set of variables require counting, φ)
2 Γ′ ← Γ
3 for each a ∈ Γ do
4 ia ← 0


- Set counter and state variables here
- i is the main counter for incoming events
- r represents constraints

5 i ← 0
6 r ← True
7 φ′ ← quantifier-elimination(φ) .Eliminate trace quantifiers
8 while getEvent (e) do
9 φ′ ← REWRITE (e, φ′)

10 if (φ′ = False)


- Events of a trace come in
- Use rewriting for formula evaluation and progression
- In case of violation, False is returned11 then

12 return φ′

13 for (each a ∈ Γ s.t. e � a) do
14 if (a = a′#) then

15 Γ← Γ \ a

16 r ← r ∧ Xia
17 if a ∈ Γ′ then
18 Γ′ ← Γ′ \ a



-Check if incoming event needs to be counted once
- Delete such variable from Γ
- Generate the constraint ensuring its occurance at location i
- Generate the constraints ensuring its absence from other lolcations
- Update the event counter

19 if (i > 0) ∧ (ia 6= i) then

20 r ← r ∧ X[ia,i−1]¬a

21 ia ← i + 1

22 if (φ′ = True) then
23 Break

24 for (each a ∈ Γ s.t. a = Xa′) do
25 Γ← (Γ \ {a}) ∪ {a′}
26 Γ′ ← (Γ′ \ {a}) ∪ {a′}
27 ia + +

28 i + +
29 return r
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Rewriting-based Monitoring - Algorithm for Constraints
1 ConstraintsTraces(Γ: Set of variables require counting, φ)
2 Γ′ ← Γ
3 for each a ∈ Γ do
4 ia ← 0


- Set counter and state variables here
- i is the main counter for incoming events
- r represents constraints

5 i ← 0
6 r ← True
7 φ′ ← quantifier-elimination(φ) .Eliminate trace quantifiers
8 while getEvent (e) do
9 φ′ ← REWRITE (e, φ′)

10 if (φ′ = False)


- Events of a trace come in
- Use rewriting for formula evaluation and progression
- In case of violation, False is returned11 then

12 return φ′

13 for (each a ∈ Γ s.t. e � a) do
14 if (a = a′#) then

15 Γ← Γ \ a

16 r ← r ∧ Xia
17 if a ∈ Γ′ then
18 Γ′ ← Γ′ \ a



-Check if incoming event needs to be counted once
- Delete such variable from Γ
- Generate the constraint ensuring its occurance at location i
- Generate the constraints ensuring its absence from other lolcations
- Update the event counter

19 if (i > 0) ∧ (ia 6= i) then

20 r ← r ∧ X[ia,i−1]¬a

21 ia ← i + 1

22 if (φ′ = True) then
23 Break

}
If formula is true then stop generating constraints

24 for (each a ∈ Γ s.t. a = Xa′) do
25 Γ← (Γ \ {a}) ∪ {a′}
26 Γ′ ← (Γ′ \ {a}) ∪ {a′}
27 ia + +

28 i + +
29 return r
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Rewriting-based Monitoring - Algorithm for Constraints
1 ConstraintsTraces(Γ: Set of variables require counting, φ)
2 Γ′ ← Γ
3 for each a ∈ Γ do
4 ia ← 0


- Set counter and state variables here
- i is the main counter for incoming events
- r represents constraints

5 i ← 0
6 r ← True
7 φ′ ← quantifier-elimination(φ) .Eliminate trace quantifiers
8 while getEvent (e) do
9 φ′ ← REWRITE (e, φ′)

10 if (φ′ = False)


- Events of a trace come in
- Use rewriting for formula evaluation and progression
- In case of violation, False is returned11 then

12 return φ′

13 for (each a ∈ Γ s.t. e � a) do
14 if (a = a′#) then

15 Γ← Γ \ a

16 r ← r ∧ Xia
17 if a ∈ Γ′ then
18 Γ′ ← Γ′ \ a



-Check if incoming event needs to be counted once
- Delete such variable from Γ
- Generate the constraint ensuring its occurance at location i
- Generate the constraints ensuring its absence from other locations
- Update the event counter

19 if (i > 0) ∧ (ia 6= i) then

20 r ← r ∧ X[ia,i−1]¬a

21 ia ← i + 1

22 if (φ′ = True) then
23 Break

}
If formula is true then stop generating constraints

24 for (each a ∈ Γ s.t. a = Xa′) do
25 Γ← (Γ \ {a}) ∪ {a′}
26 Γ′ ← (Γ′ \ {a}) ∪ {a′}
27 ia + +


-Counters that include “X” will have “X” removed
- To be counted next round

28 i + +

29 for each b ∈ Γ′ do
30 r ← r ∧ G¬b

31 return r
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Rewriting-Based Monitoring: Running Example 1

φ = ∀π1.∀π2. aπ1
−→ Fbπ2

Step 1: Finding Γ
φ = ∀π1π2 . ¬aπ1 ∨ Fbπ2

φ = ∀π1π2 . ¬aπ1 ∨ (trueUbπ2)
Γ = {¬a}
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φ = ∀π1.∀π2. aπ1
−→ Fbπ2

Step 1: Finding Γ
φ = ∀π1π2 . ¬aπ1 ∨ Fbπ2

φ = ∀π1π2 . ¬aπ1 ∨ (trueUbπ2)
Γ = {¬a}

Step 2: Separating formula and finding constraints for each part
π1 = d c b

constraintsFb =
constraints¬a =
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Rewriting-Based Monitoring: Running Example 1

φ = ∀π1.∀π2. aπ1
−→ Fbπ2

Step 1: Finding Γ
φ = ∀π1π2 . ¬aπ1 ∨ Fbπ2

φ = ∀π1π2 . ¬aπ1 ∨ (trueUbπ2)
Γ = {¬a}

constraintsFb = Fb
constraints¬a = ¬a

Step 3: Check incoming traces agree with the constraints
π2 = e e e

π2 only agrees with constraints¬a, no b was found
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φ = ∀π1.∀π2. aπ1
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Step 1: Finding Γ
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Rewriting-Based Monitoring: Running Example 1

φ = ∀π1.∀π2. aπ1
−→ Fbπ2

Step 1: Finding Γ
φ = ∀π1π2 . ¬aπ1 ∨ Fbπ2

φ = ∀π1π2 . ¬aπ1 ∨ (trueUbπ2)
Γ = {¬a}

constraintsFb = Fb
constraints¬a = ¬a

Step 3: Check incoming traces agree with the constraints
π3 = a c b

π3 disagrees with the last constraint, a was observed in the first location
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Rewriting-Based Monitoring: Running Example 2

φ = ∀π1π2
. (aπ1

U bπ2
) U cπ1

Step 1: Finding Γ
Γ = {b,#c}
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Rewriting-Based Monitoring: Running Example 2

φ = ∀π1π2
. (aπ1

U bπ2
) U cπ1

Γ = {b,#c}
Step 2: Finding constraints

π1 = a a ab ac ac ab

constraints = ¬(bc) ∧ X¬(bc) ∧ X2b ∧ X2¬c
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Γ = {b}
Step 2: Finding constraints

π1 = a a ab ac ac ab
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Γ = {b}
Step 2: Finding constraints

π1 = a a ab ac ac ab
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Rewriting-Based Monitoring: Running Example 2

φ = ∀π1π2
. (aπ1

U bπ2
) U cπ1

Γ = {b}
Step 2: Finding constraints

π1 = a a ab ac ac ab

constraints = ¬(bc)∧X¬(bc)∧X2b∧X2¬c ∧X3¬b∧X3c ∧X4¬b∧X5b

we count only the first occurrence of c
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Rewriting-Based Monitoring: Running Example 2

φ = ∀π1π2
. (aπ1

U bπ2
) U cπ1

constraints = ¬(bc)∧X¬(bc)∧X2b ∧X2¬c ∧X3¬b ∧X3c ∧X4¬b ∧X5b

Step 3: Check incoming traces agree with the constraints

π2 = a a ab ac ac ab

π2 does not create a violation, even though c is observed more than once
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Rewriting-Based Monitoring: Running Example 2

φ = ∀π1π2
. (aπ1

U bπ2
) U cπ1

constraints = ¬(bc) ∧ X¬(bc) ∧ X2b ∧ X2¬c ∧ X3¬b ∧ X3c ∧ X4¬b ∧ X5b

Step 3: Check incoming traces agree with the constraints

π3 = abc ab ab ac ac ab

π3 violates our constraint as the first location has b and c
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Rewriting-Based Monitoring: Running Example 3

φ = ∀π1π2
. (aπ1

U bπ2
) U cπ1

Γ = {b,#c}

B. Bonakdarpour (McMaster University) Part II: Runtime Verification for Alternation-free HyperLTLSeptember 27, 2016 39 / 42



Rewriting-Based Monitoring: Running Example 3

φ = ∀π1π2
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U bπ2
) U cπ1

Γ = {b,#c}

π1 = a a ab

π2 = a a

constraintsπ1 = ¬(bc) ∧ X¬(bc) ∧ X2b ∧ X2¬c

constraintsπ2 = ¬(bc) ∧ X¬(bc)
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Rewriting-Based Monitoring: Running Example 3

φ = ∀π1π2
. (aπ1

U bπ2
) U cπ1

Γ = {b,#c}

π1 = a a ab

π2 = a a

constraintsπ1 = ¬(bc) ∧ X¬(bc) ∧ X2b ∧ X2¬c

constraintsπ2 = ¬(bc) ∧ X¬(bc)

At this point, there is no constraint disagreement
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Rewriting-Based Monitoring: Running Example 3
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U bπ2
) U cπ1

Γ = {b,#c}

π1 = a a ab ac a ab

π2 = a a ab ab

constraintsπ1 = ¬(bc)∧X¬(bc)∧X2b∧X2¬c ∧X3¬b∧X3c ∧X4¬b∧X5b

constraintsπ2 = ¬(bc) ∧ X¬(bc) ∧ X2b ∧ X2¬c ∧ X3b ∧ X3¬c
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Rewriting-Based Monitoring: Running Example 3

φ = ∀π1π2
. (aπ1

U bπ2
) U cπ1

Γ = {b,#c}

π1 = a a ab ac a ab

π2 = a a ab ab

constraintsπ1 = ¬(bc)∧X¬(bc)∧X2b∧X2¬c ∧X3¬b∧X3c ∧X4¬b∧X5b

constraintsπ2 = ¬(bc) ∧ X¬(bc) ∧ X2b ∧ X2¬c ∧ X3b ∧ X3¬c

There is a violation among constraints for π1 and π2
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Presentation outline

1 Finite Semantics for LTL

2 Challenges in RV for HyperLTL

3 Rewriting-based RV Algorithm for Alternation-free HyperLTL Formulas
Identifying the Propositions of Interest
Rewriting-based RV for FLTL

4 Conclusion
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Conclusion

Summary

Monitorability for HyperLTL

Finite semantics for HyperLTL

Rewriting-based RV algorithm for alternation-free HyperLTL

Future Work

Automata-based monitoring (hyper monitors!)

RV for Alternating HyperLTL
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Questions

Thank You!
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