Runtime Verification for Alternation-Free HyperLTL

Borzoo Bonakdarpour

joint work with Noel Brett and Umair Siddique

McMaster University, ON., Canada

September 27, 2016

Real Motivation!

EDAS Conference and Journal Management System

Click on the menu items above to submit and review papers.

Please indicate whether you want to receive call-for-papers by updating your areas of interest.

Your conflicts-of-interest have not been updated in the last three months. (Persons with conflicts-of-interest are those who should not review p the same institution.)

My pending, active and accepted papers

Only papers for upcoming conferences are shown.

Conference	Paper title (details)	Abstract or manuscript deadline	Edit	Add and delete authors	Upload paper	Files	Withdraw	Session
8222 mont		February 2, 2015 Anywhere on Earth	ø	0	final deadline		×	(not yet assigned)
ALLE MORE 2015		October 18, 2014 Anywhere on Earth			paper status	Z		
IEEE IPOPS 2018		October 18, 2014 Anywhere on Earth			withdrawn			
10008-2015		December 23, 2014 Anywhere on Earth	ø	0	paper deadline	7	×	(not yet assigned)
KORGS 2015		December 23, 2014 Anywhere on Earth	ø	0	paper deadline	7	×	

S. Agrawal and B. Bonakdarpour. **Runtime Verification of** *k***-safety Hyperproperties in HyperLTL** (CSF 2016).

(日) (同) (三) (三)

Why Alternation-free HyperLTL?

Consider formula

 $\forall \pi. \exists \pi'. \varphi$

To reason about such a formula, we should have all traces.

This cannot be done by runtime techniques only.

Why Alternation-free HyperLTL?

Consider formula

 $\forall \pi. \exists \pi'. \varphi$

To reason about such a formula, we should have all traces.

This cannot be done by runtime techniques only.

Consider formula

 $\forall \pi. \forall \pi'. \varphi$

One can detect violation of such a formula by discovering two traces that do not satisfy φ .

Presentation outline

Finite Semantics for LTL

2 Challenges in RV for HyperLTL

Rewriting-based RV Algorithm for Alternation-free HyperLTL Formulas
 Identifying the Propositions of Interest
 Rewriting based RV for ELTL

Rewriting-based RV for FLTL

4 Conclusion

Framework

Definitions

Let *AP* be a set of atomic propositions and $\Sigma = 2^{AP}$ be the alphabet.

(日) (同) (三) (三)

3

Framework

Definitions

Let *AP* be a set of atomic propositions and $\Sigma = 2^{AP}$ be the alphabet.

A word is a sequence $w = a_0 a_1 \cdots$, where each a_i $(i \ge 0)$ is a letter (or event) in Σ .

The set of all finite (respectively, infinite) words are Σ^* (respectively, Σ^{ω}).

For a word $w = a_0 a_1 \cdots$, w^i means the denote the suffix $a_i a_{i+1} \cdots$.

= 900

Framework

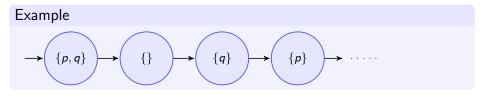
Definitions

Let *AP* be a set of atomic propositions and $\Sigma = 2^{AP}$ be the alphabet.

A word is a sequence $w = a_0 a_1 \cdots$, where each a_i $(i \ge 0)$ is a letter (or event) in Σ .

The set of all finite (respectively, infinite) words are Σ^* (respectively, Σ^{ω}).

For a word $w = a_0 a_1 \cdots$, w^i means the denote the suffix $a_i a_{i+1} \cdots$.



The semantics of $\ensuremath{\mathrm{LTL}}$ is defined over infinite words.

< 🗗 🕨

The semantics of $\ensuremath{\mathrm{LTL}}$ is defined over infinite words.

Finite LTL

Finite LTL (FLTL) allows us to reason about finite words for verifying properties at run time.

The semantics of LTL is defined over infinite words.

Finite LTL

Finite LTL (FLTL) allows us to reason about finite words for verifying properties at run time.

FLTL Syntax

The syntax of FLTL is identical to that of LTL and the semantics is based on the truth values $\mathbb{B}_2 = \{\bot, \top\}$.

- 4 週 ト - 4 三 ト - 4 三 ト

The semantics of $\ensuremath{\mathrm{LTL}}$ is defined over infinite words.

Finite LTL

Finite LTL (FLTL) allows us to reason about finite words for verifying properties at run time.

FLTL Syntax

The syntax of FLTL is identical to that of LTL and the semantics is based on the truth values $\mathbb{B}_2 = \{\bot, \top\}$.

FLTL Semantics

The semantics of $\rm FLTL$ for atomic propositions and Boolean operators are identical to those of $\rm LTL.$

- 3

イロト 不得下 イヨト イヨト

Finite LTL

FLTL Semantics

Let φ , φ_1 , and φ_2 be LTL formulas, and $u = u_0 u_1 \cdots u_n$ be a finite word.

$$\begin{bmatrix} u \models_{\mathsf{F}} \mathbf{X} \varphi \end{bmatrix} = \begin{cases} \begin{bmatrix} u^1 \models_{\mathsf{F}} \varphi \end{bmatrix} & \text{if} \quad u^1 \neq \epsilon \\ \bot & \text{otherwise} \end{cases}$$
$$\begin{bmatrix} u \models_{\mathsf{F}} \mathbf{\bar{X}} \varphi \end{bmatrix} = \begin{cases} \begin{bmatrix} u^1 \models_{\mathsf{F}} \varphi \end{bmatrix} & \text{if} \quad u^1 \neq \epsilon \\ \top & \text{otherwise} \end{cases}$$
$$\begin{bmatrix} u \models_{\mathsf{F}} \varphi_1 \mathbf{U} \varphi_2 \end{bmatrix} = \begin{cases} \top & \text{if} \quad \exists k \in [0, n] : [u^k \models_{\mathsf{F}} \varphi_2] = \top \land \\ \forall l \in [0, k) : [u^l \models_{\mathsf{F}} \varphi_1] = \top \\ \bot & \text{otherwise} \end{cases}$$

- < ∃ →

< 47 ▶ <

3

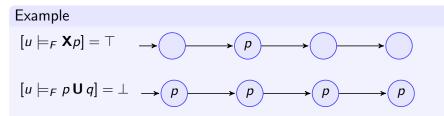
Example

イロン イヨン イヨン イヨン

- 2

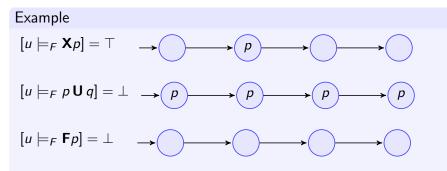
<ロ> (日) (日) (日) (日) (日)

- 2



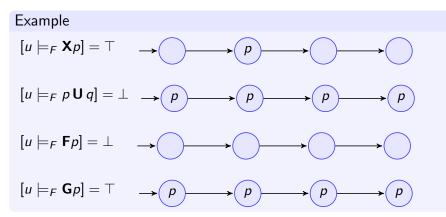
<ロ> (日) (日) (日) (日) (日)

- 34



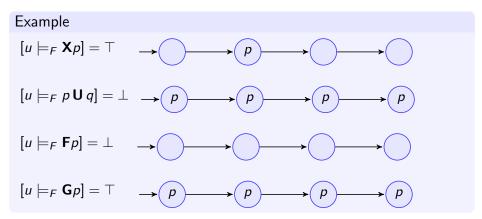
・ロン ・四 ・ ・ ヨン ・ ヨン

3



・ロン ・四 ・ ・ ヨン ・ ヨン

3



FLTL Put into Perspective

FLTL evaluates a property for a finite word regardless of future executions.

- ∢ ≣ →

< 67 ▶

Monitorability

An LTL formula φ is monitorable iff

$$\forall u \in \Sigma^*. \exists u' \in \Sigma^*. [uu' \models_F \varphi] \in \{\bot, \top\}$$

Example

Formula **GF***p* is not monitorable.

Formual *a* **U** *b* is monitorable.

3. 3

Presentation outline

Finite Semantics for LTL

3 Rewriting-based RV Algorithm for Alternation-free HyperLTL Formulas

- Identifying the Propositions of Interest
- Rewriting-based RV for FLTL

Finite Semantics for HyperLTL

For a finite trace t, let t[i,j] denote the subtrace of t from position i up to and including position j. And, t[i,..] denotes t[i,|t|-1]

Trace assignment function is now $\Pi: \mathcal{V} \to \Sigma^*.$

We define:

$$t[i,j] = egin{cases} \epsilon & ext{if} & i > |t| \ t[i,\min(j,|t|-1)] & ext{otherwise} \end{cases}$$

Finite Semantics for HyperLTL

Finite Semantics for HyperLTL

$$\begin{bmatrix} \Pi \models_{\mathcal{T}}^{\mathsf{F}} \mathbf{X} \varphi \end{bmatrix} = \begin{cases} [\Pi[1, ..] \models_{\mathcal{T}}^{\mathsf{F}} \varphi] & \text{if } \Pi[1, ..] \neq \epsilon \\ \bot & \text{otherwise} \end{cases}$$

$$\begin{bmatrix} \boldsymbol{\Pi} \models_{\mathcal{T}}^{\mathsf{F}} \bar{\mathbf{X}} \varphi \end{bmatrix} = \begin{cases} [\boldsymbol{\Pi}[1, ..] \models_{\mathcal{T}}^{\mathsf{F}} \varphi] & \text{if } \boldsymbol{\Pi}[1, ..] \neq \epsilon \\ \top & \text{otherwise} \end{cases}$$

$$\begin{bmatrix} \Pi \models_T^{\mathsf{F}} \varphi_1 \, \mathbf{U} \, \varphi_2 \end{bmatrix} = \begin{cases} \top & \text{if } \exists i \ge 0 : \Pi[i, ..] \neq \epsilon \land [\Pi[i, ..] \models_T^{\mathsf{F}} \varphi_2] = \top \land \\ \forall j \in [0, i) : [\Pi[j, ..] \models_T^{\mathsf{F}} \varphi_1] = \top \\ \bot & \text{otherwise} \end{cases}$$

イロト イヨト イヨト

æ

12 / 42

Monitorability in HyperLTL

Trace Set Prefix Relation

Let U be a finite set of finite traces and V is a finite or infinite set of traces, then the prefix relation $U \leq V$ is defined as

$$U \leq V \equiv \forall u \in U. (\exists v \in V. u \leq v)$$

Note that V may contain traces that have no prefix in U.

Monitorability in HyperLTL

Trace Set Prefix Relation

Let U be a finite set of finite traces and V is a finite or infinite set of traces, then the prefix relation $U \leq V$ is defined as

$$U \leq V \equiv \forall u \in U. \ (\exists v \in V. \ u \leq v)$$

Note that V may contain traces that have no prefix in U.

A HyperLTL formula φ is monitorable iff

$$\forall M \in \mathcal{P}^*(\Sigma^*). \exists M' \in \mathcal{P}^*(\Sigma^*). [MM' \models \varphi] \in \{\bot, \top\}$$

• Hyperproperties are more complex than traditional trace properties; i.e., we need to reason over multiple execution traces.

- Hyperproperties are more complex than traditional trace properties; i.e., we need to reason over multiple execution traces.
- Monitoring an execution may depend on the evaluation of past and future executions.

- Hyperproperties are more complex than traditional trace properties; i.e., we need to reason over multiple execution traces.
- Monitoring an execution may depend on the evaluation of past and future executions.

- Hyperproperties are more complex than traditional trace properties; i.e., we need to reason over multiple execution traces.
- Monitoring an execution may depend on the evaluation of past and future executions.

Goal is to develop RV algorithms for alternation-free HyperLTL formulas. (a subset of *k*-safety hyperproperties)

$$\phi = \forall \pi_1. \forall \pi_2. \ a_{\pi_1} \ \mathbf{U} \ b_{\pi_2}$$
$$t_1 = \mathbf{a} \mathbf{a} \mathbf{a} \mathbf{b}$$
$$t_2 = \mathbf{a} \mathbf{a}$$

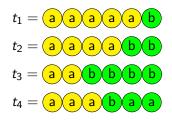
< /□ > < ∃

3. 3

$$\phi = \forall \pi_1. \forall \pi_2. \ a_{\pi_1} \ \mathbf{U} \ b_{\pi_2}$$
$$t_1 = \textcircled{a} \ a \ b \\t_2 = \textcircled{a} \ a$$

• Traces π_1 and π_2 violate the formula (even t_2 does not individually satisfy ϕ .

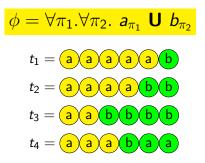
$$\phi = \forall \pi_1. \forall \pi_2. \ \boldsymbol{a}_{\pi_1} \ \boldsymbol{\mathsf{U}} \ \boldsymbol{b}_{\pi_2}$$



< A

3. 3

• Traces t_1, t_2, t_3, t_4 , individually satisfy the formula ϕ .



- Traces t_1, t_2, t_3, t_4 , individually satisfy the formula ϕ .
- However, any combination of these traces violates the formula as satisfaction must happen at the same location in all traces.

We require the information about the index of satisfaction

$$\phi = \forall \pi_1. \forall \pi_2. \ a_{\pi_1} \longrightarrow \mathbf{F} b_{\pi_2}$$
$$t_1 = \mathbf{d} \mathbf{c} \mathbf{f}$$
$$t_2 = \mathbf{a} \mathbf{e} \mathbf{b}$$

э

- 4 ⊒ →

Image: A math a math

$$\phi = \forall \pi_1. \forall \pi_2. \ a_{\pi_1} \longrightarrow \mathbf{F} b_{\pi_2}$$
$$t_1 = \mathbf{d} \mathbf{c} \mathbf{f}$$
$$t_2 = \mathbf{a} \mathbf{e} \mathbf{b}$$

• Traces t_1 and t_2 , individually satisfy the formula ϕ .

$$\phi = \forall \pi_1. \forall \pi_2. \ a_{\pi_1} \longrightarrow \mathbf{F} b_{\pi_2}$$
$$t_1 = \mathbf{d} \mathbf{c} \mathbf{f}$$
$$t_2 = \mathbf{a} \mathbf{e} \mathbf{b}$$

- Traces t_1 and t_2 , individually satisfy the formula ϕ .
- However, t_1 and t_2 collectively violate the formula as **b** never happened in π_1

Progressing through the traces requires information from previous traces

$$\phi = \forall \pi_1 \forall \pi_2. \ \mathbf{G}(a_{\pi_1} \longrightarrow a_{\pi_2})$$

$$t_1 = (a) (b) (a) (b) (a) (b)$$
$$t_2 = (a) (c) (a) (c) (c)$$
$$t_3 = (a) (a) (c) (a) (a)$$

Image: A math a math

- < ∃ →

3

$$\phi = \forall \pi_1 \forall \pi_2. \ \mathbf{G}(a_{\pi_1} \longrightarrow a_{\pi_2})$$

 $t_1 = (a, b, b, a, b)$ $t_2 = (a, e, c, a, c, c)$ $t_3 = (a, a, c, c, a, c)$

• Traces t_1 and t_2 satisfy the formula ϕ .

$$\phi = \forall \pi_1 \forall \pi_2. \ \mathbf{G}(a_{\pi_1} \longrightarrow a_{\pi_2})$$
$$t_1 = (a, b, b, a, b)$$
$$t_2 = (a, e, c, a, c)$$
$$t_3 = (a, a, c, a, a)$$

• Traces t_1 and t_2 satisfy the formula ϕ .

• However, trace t₃ violates their agreement; i.e., satisfaction must happen at the same location in all traces

Trace quantification brings more expressiveness as compared to LTL

Monitoring HyperLTL: Idea

$$\phi = \forall \pi_1. \forall \pi_2. a_{\pi_1} \mathbf{U} b_{\pi_2}$$
$$t_1 = \mathbf{a} \mathbf{a} \mathbf{a} \mathbf{a} \mathbf{a} \mathbf{b}$$
$$constraint = \mathbf{X}^{[0,4]} \neg b \land \mathbf{X}^5 b$$
$$\mathbf{X}^{[i,k]} \psi \text{ represents } \mathbf{X}^i \psi \land \dots \land \mathbf{X}^k \psi$$

< 17 ▶

-

3

Monitoring HyperLTL: Idea

$$\begin{split} \phi &= \forall \pi_1. \forall \pi_2. \ a_{\pi_1} \ \mathbf{U} \ b_{\pi_2} \\ t_1 &= \mathbf{a} \ \mathbf{a} \ \mathbf{a} \ \mathbf{a} \ \mathbf{b} \\ constraint &= \mathbf{X}^{[0,4]} \neg b \land \mathbf{X}^5 b \\ \mathbf{X}^{[i,k]} \psi \text{ represents } \mathbf{X}^i \psi \land \cdots \land \mathbf{X}^k \psi \\ \text{Incoming traces have to satisfy } \phi \text{ and these constraints} \end{split}$$

$$t_2 = (a) (a) (a) (b) (b) (constraints)$$

 $t_3 = (a) (a) (b) (b) (b) (constraints)$
 $t_4 = (a) (a) (a) (constraints)$

Image: A match a ma

- ∢ ≣ →

3

$$\phi = \forall \pi_1. \forall \pi_2. \forall \pi_3. (a_{\pi_1} \mathbf{U} \ b_{\pi_2}) \mathbf{U} \ c_{\pi_3}$$

$$t_1 = ab a ac ac a b$$

3

< 一型

$$\phi = orall \pi_1 . orall \pi_2 . orall \pi_3 . (a_{\pi_1} \mathbf{U} \ b_{\pi_2}) \mathbf{U} \ c_{\pi_3}$$

$$t_1 = ab a ac ac a b$$

 $t_2 = a b ab a ac b$

3

< 一型

$$\phi = orall \pi_1 . orall \pi_2 . orall \pi_3 . (a_{\pi_1} \mathbf{U} \ b_{\pi_2}) \mathbf{U} \ c_{\pi_3}$$

3

< 一型

$$\phi = \forall \pi_1. \forall \pi_2. \forall \pi_3. (a_{\pi_1} \mathbf{U} b_{\pi_2}) \mathbf{U} c_{\pi_3}$$

How to generate constraints in this case?

Semantics of **U** $\Pi \models_{T} \phi_{1} \mathbf{U} \phi_{2} \text{ iff } \exists i \geq 0.(\Pi[i, \infty] \models_{T} \phi_{2} \land \forall j.0 \leq j < i.\Pi[j, \infty] \models_{T} \phi_{1})$

- In this formula, the propositions of interest are b and c.
- The first satisfaction of c should be at the same index in each trace.
- Each satisfaction of *b* should be agreed upon in all traces.

Proposed Monitoring Approach

- Rewriting-based monitoring for HyperLTL
 - Using rewriting for the evaluation and progression of formula with respect to incoming events
 - Generating constraints to ensure the agreement among traces
- Hyper-Monitors for HyperLTL
 - Using LTL₄ (or RV-LTL) with counters to monitors the progress of each trace
 - Using hyper-monitors to find the violation at a given time instant

Proposed Monitoring Approach

- Rewriting-based monitoring for HyperLTL
 - Using rewriting for the evaluation and progression of formula with respect to incoming events
 - Generating constraints to ensure the agreement among traces
- Hyper-Monitors for HyperLTL
 - Using LTL₄ (or RV-LTL) with counters to monitors the progress of each trace
 - Using hyper-monitors to find the violation at a given time instant

Both approaches require to identify a set of variables requiring counting in a given HyperLTL formula (ϕ)

Proposed Monitoring Approach

- Rewriting-based monitoring for HyperLTL
 - Using rewriting for the evaluation and progression of formula with respect to incoming events
 - Generating constraints to ensure the agreement among traces
- Hyper-Monitors for HyperLTL
 - Using LTL₄ (or RV-LTL) with counters to monitors the progress of each trace
 - Using hyper-monitors to find the violation at a given time instant

Both approaches require to identify a set of variables requiring counting in a given HyperLTL formula (ϕ)

$$\phi = \forall \pi_1. \forall \pi_2. \forall \pi_3. (a_{\pi_1} \mathbf{U} b_{\pi_2}) \mathbf{U} c_{\pi_3}$$

Presentation outline

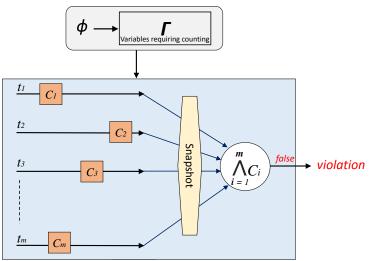
Finite Semantics for LTL

Rewriting-based RV Algorithm for Alternation-free HyperLTL Formulas

- Identifying the Propositions of Interest
- Rewriting-based RV for FLTL

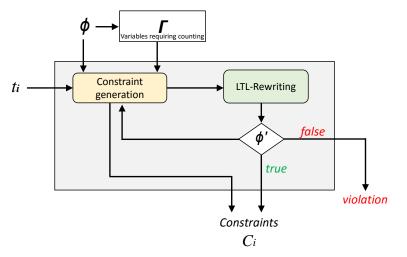
Proposed Monitoring Algorithms: An Overview

Rewriting-based Monitoring for HyperLTL



Proposed Monitoring Algorithms: An Overview

Rewriting-based Monitoring for HyperLTL



3

Outline

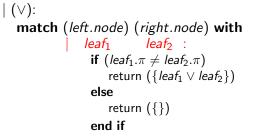
Finite Semantics for LTL

2 Challenges in RV for HyperLTL

Rewriting-based RV Algorithm for Alternation-free HyperLTL Formulas
 Identifying the Propositions of Interest
 Rewriting-based RV for FLTL

4 Conclusion

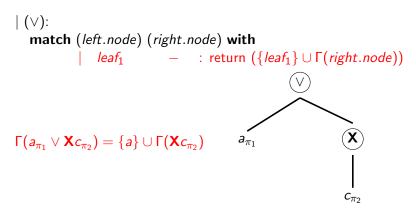
Input: Syntax tree of the HyperLTL formula (ft) Output: Set Γ function $\Gamma(ft)$ node := root(ft) $V := \{\}$ \triangleright tracks record of trace quantifiers under the scope of "U" If \neg (distinctQuantifiers(all.leaves)) return ({}) match (node) with

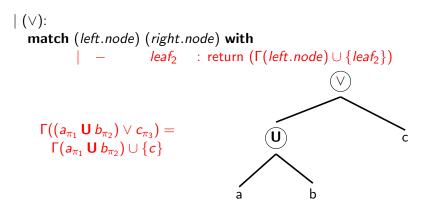


$$(\vee)$$

 a_{π_1} b_{π_2}

 $\mathsf{F}(a_{\pi_1} \lor b_{\pi_2}) = \{a \lor b\}$

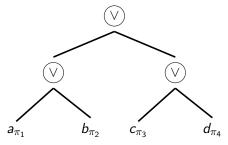


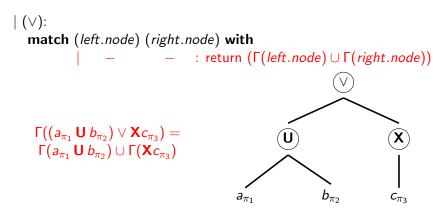


$$\begin{array}{l} | (\lor): \\ \textbf{match (left.node) (right.node) with} \\ | \{\lor, \neg\} \quad \{\lor, \neg\} : return (\Gamma(left.node) \lor \Gamma(right.node)) \end{array}$$

 $\underline{\vee}$ represents logical "OR" operation among the elements of two sets

$$\begin{split} \mathsf{\Gamma}((a_{\pi_1} \lor b_{\pi_2}) \lor (c_{\pi_3} \lor d_{\pi_4})) &= \\ \mathsf{\Gamma}(a_{\pi_1} \lor b_{\pi_2}) & \trianglelefteq \mathsf{\Gamma}(c_{\pi_3} \lor d_{\pi_4}) = \\ & \{a \lor b\} & \lor \{c \lor d\} = \\ & \{a \lor b \lor c \lor d\} \end{split}$$





```
 \begin{array}{l} (\textbf{U}): \\ \textbf{match} (left.node) (right.node) \textbf{with} \\ | \textit{leaf}_1 & \textit{leaf}_2 : \\ \textbf{if} (V - \{leaf_2.\pi\} \neq \emptyset \lor leaf_1.\pi \neq leaf_2.\pi) \\ & \text{return} (\{leaf_2\}) \\ \textbf{else} \\ & \text{return} (\{\}) \\ \textbf{end if} \end{array}
```

```
| (U) :
   match (left.node) (right.node) with
                  leaf_1 leaf_2:
                   if (V - \{leaf_2.\pi\} \neq \emptyset \lor leaf_1.\pi \neq leaf_2.\pi)
                       return ({leaf_2})
                   else
                       return ({})
                   end if
                - leaf<sub>2</sub> :
                   if (\nexists x \in (left.node).x \in \{X, U\})
                       return (\# \odot \{ leaf_2 \})
                   else
                       return (\Gamma(left.node) \cup \# \odot \{leaf_2\})
                   end if
# indicates that the corresponding variables need to be counted only once
```

 \odot represents application of unary operators (e.g., $\neg, \textbf{X})$ to the elements of a set

```
| (\mathbf{U}) :

match (left.node) (right.node) with

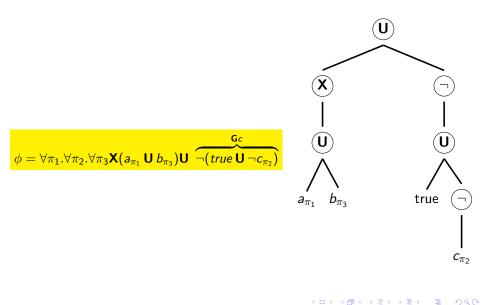
| \frac{leaf_1}{V \leftarrow V \cup \{leaf_1.\pi\}};

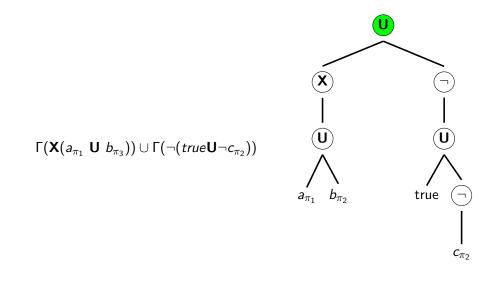
return (\Gamma(right.node))
```

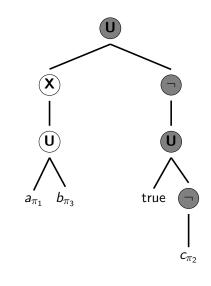
```
| (U) :
  match (left.node) (right.node) with
                  leaf
                           - :
                  V \leftarrow V \cup \{ leaf_1.\pi \};
                 return (Γ(right.node))
                  if (\nexists x \in (left.node).x \in \{X, U\})
                      return (\# \odot \Gamma(right.node))
                    else
                        return (\Gamma(left.node) \cup \# \odot \Gamma(right.node))
                    end if
```

match (node) with

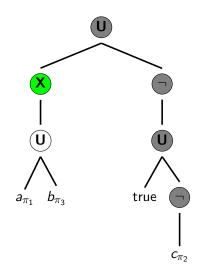
- | (*leaf*) : return ({*leaf*})
- (\neg) : return $(\neg \odot \Gamma(child.node))$
- | (**X**) : return (**X** \odot Γ (*child.node*))



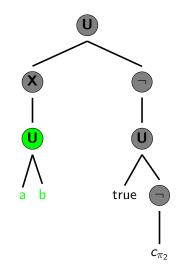




$\Gamma(\mathbf{X}(a_{\pi_1} \mathbf{U} b_{\pi_3}))$

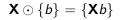


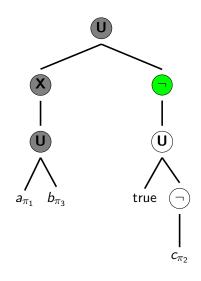
$\mathbf{X} \odot \Gamma((a_{\pi_1} \mathbf{U} b_{\pi_3}))$



< 行

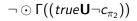
3

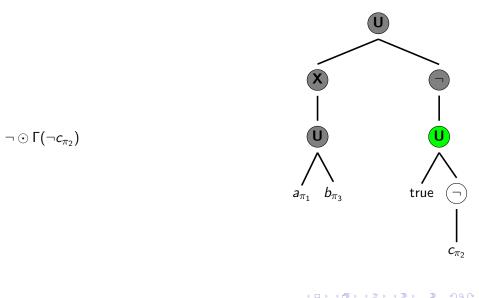


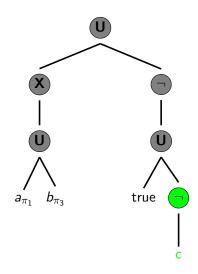


< 行

3





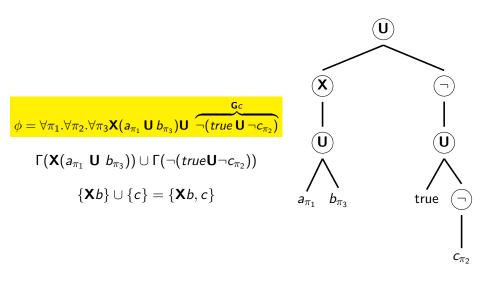


- 一司

3

$$\neg \odot \{\neg c_{\pi_2}\} = \{c\}$$

Algorithm to Find Γ : Running Example



Outline

Finite Semantics for LTL

2 Challenges in RV for HyperLTL

Rewriting-based RV Algorithm for Alternation-free HyperLTL Formulas
 Identifying the Propositions of Interest

Rewriting-based RV for FLTL

4 Conclusion

REWRITE (ϕ , e)

Input: LTL formula ϕ , Event *e* **Output:** Formula ψ

- 4 ⊒ →

< 67 ▶

```
Rewriting Algorithm [Havelund, Rosu, 2001]

REWRITE (\phi, e)

match (\phi) with

| (\phi_1 \lor \phi_2) :

return (REWRITE(\phi_1, e) \lor REWRITE(\phi_2, e))
```

- 3

Rewriting Algorithm [Havelund, Rosu, 2001] **REWRITE** (ϕ, e) **match** (ϕ) with $|(\phi_1 \lor \phi_2):$ return $(REWRITE(\phi_1, e) \lor REWRITE(\phi_2, e))$

 $\phi = (a \lor b)$ In-coming event = a

REWRITE (ϕ, e) **match** (ϕ) with $| (\phi_1 \lor \phi_2) :$ return $(REWRITE(\phi_1, e) \lor REWRITE(\phi_2, e))$

 $\phi = (a \lor b) \quad \text{In-coming event} = a$ $\implies \text{return} (REWRITE(a, a) \lor REWRITE(b, a))$

- 御子 ・ 日子・ ・ 日子・ ・ 日

REWRITE (ϕ, e) **match** (ϕ) with $|(\phi_1 \lor \phi_2) :$ return $(REWRITE(\phi_1, e) \lor REWRITE(\phi_2, e))$

 $\phi = (a \lor b) \quad \text{In-coming event} = a$ $\implies \text{return} (REWRITE(a, a) \lor REWRITE(b, a))$

Further steps will return the satisfaction by finding $(a \vDash a) \lor (b \vDash a)$

```
REWRITE (\phi, e)
```

```
| (\phi_1 \mathbf{U} \phi_2) :
if(last_event(e)) then
```

```
return (REWRITE(\phi_2, e))
```

else

 $\mathsf{return} \; (\mathsf{REWRITE}(\phi_2, e) \lor \mathsf{REWRITE}(\phi_1, e) \land (\phi_1 \; \mathsf{U} \; \phi_2)))$

→ 3 → 3

REWRITE (ϕ, e)

```
| (\phi_1 \ \mathbf{U} \ \phi_2) :
if (last_event(e)) then
return (REWRITE(\phi_2, e))
```

else

return (REWRITE(ϕ_2, e) \lor REWRITE(ϕ_1, e) \land ($\phi_1 \cup \phi_2$)))

 $\phi = (a \ \mathbf{U} \ b)$ In-coming event = a

REWRITE (ϕ, e)

```
| (\phi_1 \mathbf{U} \phi_2) :
if(last_event(e)) then
return (REWRITE(\phi_2, e))
```

else

 $\mathsf{return} \; (\mathsf{REWRITE}(\phi_2, e) \lor \mathsf{REWRITE}(\phi_1, e) \land (\phi_1 \; \mathsf{U} \; \phi_2)))$

```
\phi = (a \ \mathbf{U} \ b) \quad \text{In-coming event} = a

\implies \text{return} (REWRITE(b, a) \lor (REWRITE(a, a) \land (a \ \mathbf{U} \ b)))
```

★ ∃ → ∃

REWRITE (ϕ, e)

```
| (\phi_1 \ \mathbf{U} \ \phi_2) :
if(last_event(e)) then
return (REWRITE(\phi_2, e))
```

else

 $\mathsf{return} \; (\mathsf{REWRITE}(\phi_2, e) \lor \mathsf{REWRITE}(\phi_1, e) \land (\phi_1 \; \mathsf{U} \; \phi_2)))$

$$\phi = (a \ \mathbf{U} \ b)$$
 In-coming event $= a$
 \implies return (*False* \lor (*True* \land ($a \ \mathbf{U} \ b$)))

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

```
REWRITE (\phi, e)
```

```
|(\phi_1 \mathbf{U} \phi_2):
if(last_event(e)) then
```

```
return (REWRITE(\phi_2, e))
```

else

 $\mathsf{return} \; (\mathsf{REWRITE}(\phi_2, e) \lor \mathsf{REWRITE}(\phi_1, e) \land (\phi_1 \; \mathsf{U} \; \phi_2)))$

 $\phi = (a \ \mathbf{U} \ b) \quad \text{In-coming event} = a$ $\implies \text{return} \ (False \lor (True \land (a \ \mathbf{U} \ b)))$

Formula has not yet been satisfied/violated

 $a \cup b$ will be used again to find the satisfaction/violation

REWRITE (ϕ , e)

```
| (\mathbf{X}\phi) :
if(last_event(e)) then
return (False)
else
```

return REWRITE(ϕ , e)

REWRITE (ϕ , e)

```
| (\mathbf{X}\phi) :
if(last_event(e)) then
return (False)
```

else

return REWRITE(ϕ , e)

$$\phi = (\mathbf{X}b)$$
 In-coming event = a

REWRITE (ϕ , e)

```
| (\mathbf{X}\phi) :
if(last_event(e)) then
return (False)
```

else

return REWRITE(ϕ , e)

 $\phi = (\mathbf{X}b) \quad \text{In-coming event} = a \\ \implies \text{return } (\text{REWRITE}(b, e))$

- 3

REWRITE (ϕ , e)

```
| (\mathbf{X}\phi) :
if(last_event(e)) then
return (False)
```

else

return REWRITE(ϕ , e)

 $\phi = (\mathbf{X}b) \quad \text{In-coming event} = a \\ \implies \text{return } (\text{REWRITE}(b, e))$

The next in-coming event will have to satisfy b

REWRITE (ϕ , e)

```
| (\mathbf{X}\phi) :
if(last_event(e)) then
return (False)
```

else

return REWRITE(ϕ, e)

 $\phi = (\mathbf{X}b) \quad \text{In-coming event} = a \\ \implies \text{return } (\text{REWRITE}(b, e))$

The next in-coming event will have to satisfy b

If a was last event, then violation found.

Implementation of "strong next"

REWRITE (ϕ, e)

 $| (\phi[e]) :$ if $(e \vDash \phi)$ then return (*True*) elseif $(e \nvDash \phi)$ return(*False*) | (*True*) : return (*True*) | (*False*) : return (*False*)

★ 3 ★ 3

REWRITE (ϕ, e)

```
match (\phi) with
|(\phi_1 \lor \phi_2):
   return (REWRITE(\phi_1, e) \lor REWRITE(\phi_2, e))
|(\phi_1 \mathbf{U} \phi_2):
if (last_event(e)) then
   return (REWRITE(\phi_2, e))
else
   return (REWRITE(\phi_2, e) \lor REWRITE(\phi_1, e) \land (\phi_1 \cup \phi_2)))
| (\mathbf{X}\phi) :
if(last_event(e)) then
   return (False)
else
   return REWRITE(\phi, e)
|(\phi[e]):
if (e \models \phi) then
   return (True)
elseif(e \nvDash \phi)
   return(False)
| (True) : return (True)
(False) : return (False)
```

$$\phi = \mathbf{a} \; \mathbf{U} \; \mathbf{b} \; \; \pi = \epsilon$$

3

< 一型

$$\phi = a \ \mathbf{U} \ b \ \pi = a \ - \ \mathbf{Event} \ \mathsf{comes} \ \mathsf{in}$$

< 17 ▶

3 x 3

$$\phi = a \mathbf{U} b \pi = a$$

$$\phi \leftarrow \mathsf{REWRITE}(\phi, a)$$

3

- 一司

$$\phi = a \mathbf{U} b \pi = a$$

 $\phi \leftarrow \mathsf{REWRITE}(\phi, a)$ $\implies \mathsf{return} \ (\mathsf{REWRITE}(b, a) \lor (\mathsf{REWRITE}(a, a) \land (a \ \mathbf{U} \ b)))$

$$\phi = a \mathbf{U} b \pi = a$$

$$\phi \leftarrow \mathsf{REWRITE}(\phi, a)$$

$$\implies \mathsf{return} \left(\frac{\mathsf{False}}{\mathsf{False}} \lor \left(\frac{\mathsf{True}}{\mathsf{Full}} \land (a \ \mathsf{U} \ b) \right) \right)$$

3 x 3

< 一型

$$\phi = a \mathbf{U} b \pi = \mathbf{a}$$

 $\phi \leftarrow \mathsf{REWRITE}(\phi, a) \\ \phi \leftarrow (a \ \mathbf{U} \ b)$

3 x 3

$$\phi = a \ \mathbf{U} \ b \ \pi = aa - \mathbf{Event}$$
 comes in

< 17 ▶

3 x 3

$$\phi = a \mathbf{U} b \pi = a \mathbf{a}$$

$$\phi \leftarrow \mathsf{REWRITE}(\phi, a)$$

-

< 一型

$$\phi = a \mathbf{U} b \pi = a \mathbf{a}$$

 $\phi \leftarrow \mathsf{REWRITE}(\phi, a)$ $\implies \mathsf{return} \ (\mathsf{REWRITE}(b, a) \lor (\mathsf{REWRITE}(a, a) \land (a \ \mathbf{U} \ b)))$

$$\phi = a \mathbf{U} b \pi = a \mathbf{a}$$

$$\phi \leftarrow \mathsf{REWRITE}(\phi, a) \\ \implies \mathsf{return} (\frac{\mathsf{False}}{\mathsf{False}} \lor (\frac{\mathsf{True}}{\mathsf{rue}} \land (a \ \mathsf{U} \ b)))$$

3 x 3

< 一型

$$\phi = \mathbf{a} \ \mathbf{U} \ \mathbf{b} \ \ \pi = \mathbf{a} \mathbf{a}$$

 $\phi \leftarrow \mathsf{REWRITE}(\phi, a) \\ \phi \leftarrow (a \ \mathbf{U} \ b)$

3 x 3

$$\phi = a \mathbf{U} b \pi = aab - \mathbf{Event}$$
 comes in

< 17 ▶

3 x 3

$$\phi = \mathbf{a} \ \mathbf{U} \ \mathbf{b} \ \ \pi = \mathbf{a} \mathbf{a} \mathbf{b}$$

$$\phi \leftarrow \mathsf{REWRITE}(\phi, b)$$

3 x 3

< 一型

$$\phi = a \mathbf{U} b \pi = a a b$$

 $\phi \leftarrow \mathsf{REWRITE}(\phi, b)$ $\implies \mathsf{return} \ (\mathsf{REWRITE}(b, b) \lor (\mathsf{REWRITE}(a, b) \land (a \ \mathbf{U} \ b)))$

$$\phi = a \mathbf{U} b \pi = a a b$$

$$\phi \leftarrow \mathsf{REWRITE}(\phi, b) \\ \implies \mathsf{return} (\frac{\mathsf{True}}{\mathsf{V}} \lor (\frac{\mathsf{False}}{\mathsf{False}} \land a \ \mathbf{U} \ b))$$

< 🗇 🕨

3 x 3

$$\phi = a \mathbf{U} b \pi = aab$$
$$\phi \leftarrow \mathsf{REWRITE}(\phi, b)$$
$$\phi \leftarrow True$$

Image: A math a math

- 4 ⊒ →

$$\phi = a \mathbf{U} b \pi = aab$$

$$\phi \leftarrow \text{REWRITE}(\phi, b)$$

$$\phi \leftarrow True$$
Formula is satisfied!

< 🗇 🕨

3 x 3

Rewriting-based Monitoring for HyperLTL: Challenges

• Progressing through the traces requires information from previous traces

 $\phi = \forall \pi_1. \forall \pi_2. a_{\pi_1} \longrightarrow \mathbf{F} b_{\pi_2}$

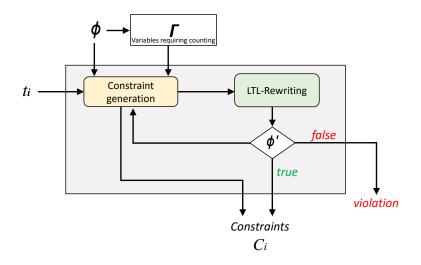
- Tracking the satisfaction of sub-formulas is required
- Constraints generation is dynamic depending upon the agreement amongst traces

Rewriting-based Monitoring: Proposed Approach

- Find the set of variables which require counting (Γ)
- Use rewriting to check the satisfaction and progress of the formula
- Generate the constraints (required for trace agreement) for each incoming event

These steps are performed for all incoming traces

Rewriting-based Monitoring for HyperLTL



< 回 ト < 三 ト < 三 ト

3

Input: HyperLTL formula ϕ , Γ , set of incoming traces M**Output**: $\lambda = \{\bot, ?\}$

3

<∄> <∃

 Input: HyperLTL formula ϕ , Γ , set of incoming traces M

 Output: $\lambda = \{\bot, ?\}$

 1 while (1) do

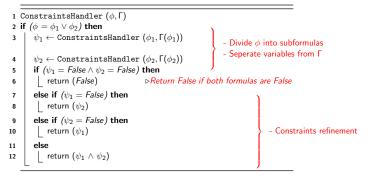
 2
 for each $m \in M$ do

 3
 $\sub{C_m} \leftarrow \text{ConstraintsHandler}(\phi, \Gamma) \quad \triangleright \text{Generate constraints}$

Input: HyperLTL formula ϕ , Γ , set of incoming traces MOutput: $\lambda = \{\bot, ?\}$ 1 while (1) do 2 $\int \text{for each } m \in M \text{ do}$ 3 $\int C_m \leftarrow \text{ConstraintsHandler}(\phi, \Gamma) \qquad \triangleright \text{Generate constraints}$ 4 Take a snapshot for counters $C = \{C_1, C_2, \dots, C_m\}$ at time instant 5 $\beta = \text{SAT}(\bigwedge_{m=1}^M (C_m)) \qquad \triangleright \text{Check the satisfiability of constraints}$ 6 if $(\beta = \text{false})$ then 7 $\lfloor \lambda := \bot$ 8 return (λ)

```
1 ConstraintsHandler (\phi, \Gamma)
 2 if (\phi = \phi_1 \lor \phi_2) then
         \psi_1 \leftarrow \text{ConstraintsHandler}(\phi_1, \Gamma(\phi_1))
 3
         \psi_2 \leftarrow \text{ConstraintsHandler}(\phi_2, \Gamma(\phi_2))
 4
         if (\psi_1 = False \land \psi_2 = False) then
          return (False)
 6
         else if (\psi_1 = False) then
 7
          return (\psi_2)
 8
         else if (\psi_2 = False) then
 9
              return (\psi_1)
10
11
               else
                   return (\psi_1 \wedge \psi_2)
12
13 else
         if (\phi := \phi_1 \cup \phi_2 \land ((\phi_1 := \phi_L \lor \phi_R) \land
14
         distinctQuantifiers(\phi_{I}, \phi_{P}) )) then
              \psi_1 \leftarrow \text{ConstraintsHandler}(\phi_1 \cup \phi_2, \Gamma)
15
              \psi_2 \leftarrow \text{ConstraintsHandler} (\phi_R \mathbf{U} \phi_2, \Gamma)
16
              if \psi_1 = False \land \psi_2 = False then
17
                   return (False)
18
              else if \psi_1 = False then
19
                   return ((\phi_R \mathbf{U} \phi_2) \wedge \psi_2)
20
              else if \psi_2 = False then
21
                   return ((\phi_L \mathbf{U} \phi_2) \wedge \psi_1)
22
               else
23
                   return (((\phi_R \mathbf{U} \phi_2) \lor (\phi_R \mathbf{U} \phi_2)) \land \psi_1)
24
         else
25
              r \leftarrow \text{ConstraintsTraces}(\Gamma, \phi)
26
27
              if (r = False) then
28
                    return False
29
               else
                    return r
30
```

(日) (同) (三) (三)



```
1 ConstraintsHandler (\phi, \Gamma)
 2 else
         if (\phi := \phi_1 \cup \phi_2 \land ((\phi_1 := \phi_I \lor \phi_R) \land
 3
         distinctQuantifiers(\phi_I, \phi_R) )) then
              \psi_1 \leftarrow \text{ConstraintsHandler} (\phi_1 \ \mathbf{U} \ \phi_2, \Gamma)
 4
                                                                                    - Left side of Until is disjunction with different quantifiers
                                                                                    - Divide to find which side of disjunction finds satisfaction
              \psi_2 \leftarrow \text{ConstraintsHandler} (\phi_R \cup \phi_2, \Gamma)
 5
              if (\psi_1 = False \land \psi_2 = False) then
 6
                  return (False)
              else if (\psi_1 = False) then
 8
                  return ((\phi_R \mathbf{U} \phi_2) \wedge \psi_2)
 q
                                                                                         - Constraints are refined according to
                                                                                         the satisfaction of disjunction
              else if (\psi_2 = False) then
10
                  return ((\phi_1 \ \mathbf{U} \ \phi_2) \land \psi_1)
11
12
              else
               return (((\phi_L \mathbf{U} \phi_2) \lor (\phi_R \mathbf{U} \phi_2)) \land \psi_1)
13
         else
14
              r \leftarrow \text{ConstraintsTraces}(\Gamma, \phi)
15
16
              if (r = False) then
                   return False
                                                                                         - Generate Constraint for each trace
17
18
              else
                  return r
19
```

```
    ConstraintsTraces(Γ: Set of variables require counting, φ)

 2 \Gamma' \leftarrow \Gamma
 3 for each a \in \Gamma do
 4 i_a \leftarrow 0
 5 i \leftarrow 0
 6 r \leftarrow True
 7 \phi' \leftarrow \text{quantifier-elimination}(\phi)
                                                                          ▷Eliminate trace quantifiers
 8 while getEvent (e) do
          \phi' \leftarrow \text{REWRITE}(e, \phi')
 9
          if (\phi' = False) then
10
               return \phi'
11
          for (each a \in \Gamma s.t. e \vDash a) do
12
               if (a = a'_{\mu}) then
13
                 | Γ ← Γ̃ \ a
14
               r \leftarrow r \land \mathbf{X}^i a
15
               if a \in \Gamma' then
16
                | \Gamma' \leftarrow \Gamma' \setminus a
17
               if (i > 0) \land (i_a \neq i) then
18
                 r \leftarrow r \land \mathbf{X}^{[i_a, i-1]} \neg a
19
20
            i_a \leftarrow i + 1
          if (\phi' = True) then
21
22
               Break
          for (each a \in \Gamma s.t. a = Xa') do
23
               \Gamma \leftarrow (\Gamma \setminus \{a\}) \cup \{a'\}
24
25
               \Gamma' \leftarrow (\Gamma' \setminus \{a\}) \cup \{a'\}
26
               i_{a} + +
27
          i + +
28 for each b \in \Gamma' do
     r \leftarrow r \land \mathbf{G} \neg b
29
30 return r
```

B. Bonakdarpour (McMaster University) Part II: Runtime Verification for Alternation-f September 27, 2016 36 / 42

(日) (同) (三) (三)

1 ConstraintsTraces(Γ: Set of variables require counting, φ)

- $\mathbf{2} \ \Gamma' \gets \Gamma$
- 3 for each $a \in \Gamma$ do
- 4 $i_a \leftarrow 0$
- 5 *i* ← 0
- 6 $r \leftarrow True$

-)
 - Set counter and state variables here
 - *i* is the main counter for incoming events
 - r represents constraints

```
    ConstraintsTraces(Γ: Set of variables require counting, φ)

2 \Gamma' \leftarrow \Gamma
                                                - Set counter and state variables here
3 for each a \in \Gamma do
                                                - i is the main counter for incoming events
    i_a \leftarrow 0
                                                - r represents constraints
 5 i \leftarrow 0
 6 r \leftarrow True
7 \phi' \leftarrow \text{guantifier-elimination}(\phi)
                                                           ⊳Eliminate trace quantifiers
8 while getEvent (e) do
       \phi' \leftarrow \text{REWRITE} (e, \phi')
                                                  - Events of a trace come in
 a
       if (\phi' = False)
                                                  - Use rewriting for formula evaluation and progression
10
        then
                                                  - In case of violation. False is returned
           return \phi'
12
```

```
    ConstraintsTraces(Γ: Set of variables require counting, φ)

 2 Γ′ ← Γ
 3 for each a \in \Gamma do
                                                    - Set counter and state variables here
     i_a \leftarrow 0
                                                    - i is the main counter for incoming events
                                                    - r represents constraints
 5 i \leftarrow 0
 6 r \leftarrow True
 7 \phi' \leftarrow \text{guantifier-elimination}(\phi)
                                                               ⊳Eliminate trace quantifiers
 8 while getEvent (e) do
        \phi' \leftarrow \text{REWRITE}(e, \phi')
                                                     - Events of a trace come in
        if (\phi' = False)
                                                     - Use rewriting for formula evaluation and progression
10
                                                     - In case of violation. False is returned
         then
12
            return \phi'
        for (each a \in \Gamma s.t. e \models a) do
13
             if (a = a'_{\mu}) then
14
15
              | \Gamma \leftarrow \overline{\Gamma} \setminus a
             r \leftarrow r \land \mathbf{X}^i a
                                                      -Check if incoming event needs to be counted once
16
             if a \in \Gamma' then
                                                      - Delete such variable from E
17
                                                      - Generate the constraint ensuring its occurance at location i
18
              | \Gamma' \leftarrow \Gamma' \setminus a
                                                      - Generate the constraints ensuring its absence from other lolcations
             if (i > 0) \land (i_a \neq i) then
19
                                                      - Update the event counter
              r \leftarrow r \land \mathbf{X}^{[i_a,i-1]} \neg a
20
            i_2 \leftarrow i+1
21
```

```
    ConstraintsTraces(Γ: Set of variables require counting, φ)

 2 Γ′ ← Γ
 3 for each a ∈ Γ do
                                                   - Set counter and state variables here
     i_a \leftarrow 0
                                                   - i is the main counter for incoming events
                                                   - r represents constraints
 5 i \leftarrow 0
 6 r \leftarrow True
 7 \phi' \leftarrow \text{guantifier-elimination}(\phi)
                                                              ⊳Eliminate trace quantifiers
 8 while getEvent (e) do
        \phi' \leftarrow \text{REWRITE}(e, \phi')
 a
                                                    - Events of a trace come in
        if (\phi' = False)
                                                    - Use rewriting for formula evaluation and progression
10
                                                    - In case of violation. False is returned
        then
12
            return \phi'
        for (each a \in \Gamma s.t. e \models a) do
13
            if (a = a'_{\mu}) then
14
15
              | \Gamma \leftarrow \overline{\Gamma} \setminus a
            r \leftarrow r \land \mathbf{X}^i a
                                                     -Check if incoming event needs to be counted once
16
            if a \in \Gamma' then
                                                     - Delete such variable from E
17
                                                     - Generate the constraint ensuring its occurance at location i
18
              | \Gamma' \leftarrow \Gamma' \setminus a
                                                     - Generate the constraints ensuring its absence from other lolcations
            if (i > 0) \land (i_a \neq i) then
19
                                                     - Update the event counter
              r \leftarrow r \land \mathbf{X}^{[i_a, i-1]} \neg a
20
21
            i_a \leftarrow i + 1
22
        if (\phi' = True) then
          Break
                                                     If formula is true then stop generating constraints
23
```

```
    ConstraintsTraces(Γ: Set of variables require counting, φ)

 2 Γ' ← Γ
 3 for each a ∈ Γ do
                                                    - Set counter and state variables here
                                                    - i is the main counter for incoming events
     i_a \leftarrow 0

    r represents constraints

 5 i \leftarrow 0
 6 r \leftarrow True
 7 \phi' \leftarrow \text{guantifier-elimination}(\phi)
                                                               Eliminate trace quantifiers
 8 while getEvent (e) do
        \phi' \leftarrow \text{REWRITE} (e, \phi')
                                                     - Events of a trace come in
        if (\phi' = False)
                                                     - Use rewriting for formula evaluation and progression
10
11
         then
                                                     - In case of violation, False is returned
            return δ
12
13
        for (each a \in \Gamma s.t. e \models a) do
14
             if (a = a'_{\mu}) then
15
              | \Gamma \leftarrow \Gamma \setminus a
             r \leftarrow r \land \mathbf{X}^i a
                                                      -Check if incoming event needs to be counted once
16
            if a \in \Gamma' then
17
                                                      - Delete such variable from F
              \Gamma' \leftarrow \Gamma' \setminus a
                                                      - Generate the constraint ensuring its occurance at location i
18
                                                      - Generate the constraints ensuring its absence from other locations
             if (i > 0) \land (i_a \neq i) then
19
                                                      - Update the event counter
              r \leftarrow r \land \mathbf{X}^{[i_a, i-1]} \neg a
20
            i_a \leftarrow i + 1
21
        if (\phi' = True) then
22
         Break
                                                      If formula is true then stop generating constraints
23
24
        for (each a \in \Gamma s.t. a = Xa') do
            \Gamma \leftarrow (\Gamma \setminus \{a\}) \cup \{a'\}
25
             \Gamma' \leftarrow (\Gamma' \setminus \{a\}) \cup \{a'\}
26
                                                      -Counters that include "X" will have "X" removed
27
                                                      - To be counted next round
28
29 for each b \in \Gamma' do
    r \leftarrow r \land \mathbf{G} \neg b
31 return r
                                                                                                                                         A (1) > A (2) > A
```

$$\phi = \forall \pi_1. \forall \pi_2. \ a_{\pi_1} \longrightarrow \mathbf{F} b_{\pi_2}$$

Step 1: Finding
$$\Gamma$$

 $\phi = \forall_{\pi_1 \pi_2}. \neg a_{\pi_1} \lor \mathbf{F} b_{\pi_2}$
 $\phi = \forall_{\pi_1 \pi_2}. \neg a_{\pi_1} \lor (true \mathbf{U} b_{\pi_2})$
 $\Gamma = \{\neg a\}$

3

< 67 ▶

$$\phi = \forall \pi_1. \forall \pi_2. a_{\pi_1} \longrightarrow \mathbf{F} b_{\pi_2}$$

Step 1: Finding
$$\Gamma$$

 $\phi = \forall_{\pi_1 \pi_2}. \neg a_{\pi_1} \lor \mathbf{F} b_{\pi_2}$
 $\phi = \forall_{\pi_1 \pi_2}. \neg a_{\pi_1} \lor (true \mathbf{U} b_{\pi_2})$
 $\Gamma = \{\neg a\}$

Step 2: Separating formula and finding constraints for each part $\pi_1 = (\mathbf{d} \cdot \mathbf{c} \cdot \mathbf{b})$ constraints_{Fb} =

 $constraints_{\neg a} =$

$$\phi = \forall \pi_1. \forall \pi_2. a_{\pi_1} \longrightarrow \mathbf{F} b_{\pi_2}$$

Step 1: Finding
$$\Gamma$$

 $\phi = \forall_{\pi_1 \pi_2}. \neg a_{\pi_1} \lor \mathbf{F} b_{\pi_2}$
 $\phi = \forall_{\pi_1 \pi_2}. \neg a_{\pi_1} \lor (true \mathbf{U} b_{\pi_2})$
 $\Gamma = \{\neg a\}$

Step 2: Separating formula and finding constraints for each part $\pi_1 = (\mathbf{d}, \mathbf{c}, \mathbf{b})$ *constraints*_{Fb} =? *constraints*_{¬a} = ¬a

$$\phi = \forall \pi_1. \forall \pi_2. a_{\pi_1} \longrightarrow \mathbf{F} b_{\pi_2}$$

Step 1: Finding
$$\Gamma$$

 $\phi = \forall_{\pi_1 \pi_2}. \neg a_{\pi_1} \lor \mathbf{F} b_{\pi_2}$
 $\phi = \forall_{\pi_1 \pi_2}. \neg a_{\pi_1} \lor (true \mathbf{U} b_{\pi_2})$
 $\Gamma = \{\neg a\}$

Step 2: Separating formula and finding constraints for each part $\pi_1 = \mathbf{d} \cdot \mathbf{c} \cdot \mathbf{b}$ *constraints*_{Fb} =? *constraints*_{¬a} = ¬a

$$\phi = \forall \pi_1. \forall \pi_2. a_{\pi_1} \longrightarrow \mathbf{F} b_{\pi_2}$$

Step 1: Finding
$$\Gamma$$

 $\phi = \forall_{\pi_1 \pi_2}. \neg a_{\pi_1} \lor \mathbf{F} b_{\pi_2}$
 $\phi = \forall_{\pi_1 \pi_2}. \neg a_{\pi_1} \lor (true \mathbf{U} b_{\pi_2})$
 $\Gamma = \{\neg a\}$

Step 2: Separating formula and finding constraints for each part $\pi_1 = \mathbf{d} \cdot \mathbf{c} \cdot \mathbf{b}$ *constraints*_{Fb} = Fb *constraints*_{¬a} = ¬a

$$\phi = \forall \pi_1. \forall \pi_2. a_{\pi_1} \longrightarrow \mathbf{F} b_{\pi_2}$$

```
Step 1: Finding \Gamma

\phi = \forall_{\pi_1 \pi_2} \cdot \neg a_{\pi_1} \lor \mathbf{F} b_{\pi_2}

\phi = \forall_{\pi_1 \pi_2} \cdot \neg a_{\pi_1} \lor (true \mathbf{U} b_{\pi_2})

\Gamma = \{\neg a\}
```

```
constraints_{Fb} = Fb
constraints_{\neg a} = \neg a
```

Step 3: Check incoming traces agree with the constraints $\pi_2 = e e e$

★ 3 ★ 3

$$\phi = \forall \pi_1. \forall \pi_2. \ a_{\pi_1} \longrightarrow \mathbf{F} b_{\pi_2}$$

```
Step 1: Finding \Gamma

\phi = \forall_{\pi_1 \pi_2} \cdot \neg a_{\pi_1} \lor \mathbf{F} b_{\pi_2}

\phi = \forall_{\pi_1 \pi_2} \cdot \neg a_{\pi_1} \lor (true \mathbf{U} b_{\pi_2})

\Gamma = \{\neg a\}
```

 $constraints_{Fb} = Fb$ $constraints_{\neg a} = \neg a$

Step 3: Check incoming traces agree with the constraints $\pi_2 = e e e$

→ 3 → 3

$$\phi = \forall \pi_1. \forall \pi_2. a_{\pi_1} \longrightarrow \mathbf{F} b_{\pi_2}$$

```
Step 1: Finding \Gamma

\phi = \forall_{\pi_1 \pi_2} \cdot \neg a_{\pi_1} \lor \mathbf{F} b_{\pi_2}

\phi = \forall_{\pi_1 \pi_2} \cdot \neg a_{\pi_1} \lor (true \mathbf{U} b_{\pi_2})

\Gamma = \{\neg a\}
```

 $constraints_{Fb} = Fb$ $constraints_{\neg a} = \neg a$

Step 3: Check incoming traces agree with the constraints $\pi_2 = e e e$

→ 3 → 3

$$\phi = \forall \pi_1. \forall \pi_2. a_{\pi_1} \longrightarrow \mathbf{F} b_{\pi_2}$$

Step 1: Finding
$$\Gamma$$

 $\phi = \forall_{\pi_1 \pi_2}. \neg a_{\pi_1} \lor \mathbf{F} b_{\pi_2}$
 $\phi = \forall_{\pi_1 \pi_2}. \neg a_{\pi_1} \lor (true \mathbf{U} b_{\pi_2})$
 $\Gamma = \{\neg a\}$

 $\frac{constraints_{Fb} = Fb}{constraints_{\neg a} = \neg a}$

Step 3: Check incoming traces agree with the constraints $\pi_2 = \mathbf{e} \cdot \mathbf{e} \cdot \mathbf{e}$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

$$\phi = \forall \pi_1. \forall \pi_2. a_{\pi_1} \longrightarrow \mathbf{F} b_{\pi_2}$$

```
Step 1: Finding \Gamma

\phi = \forall_{\pi_1 \pi_2}. \neg a_{\pi_1} \lor \mathbf{F} b_{\pi_2}

\phi = \forall_{\pi_1 \pi_2}. \neg a_{\pi_1} \lor (true \mathbf{U} b_{\pi_2})

\Gamma = \{\neg a\}
```

 $\frac{constraints_{Fb} = Fb}{constraints_{\neg a} = \neg a}$

Step 3: Check incoming traces agree with the constraints $\pi_2 = e e e$

 π_2 only agrees with *constraints*_{¬a}, no *b* was found

<20 ≥ 3

$$\phi = \forall \pi_1. \forall \pi_2. a_{\pi_1} \longrightarrow \mathbf{F} b_{\pi_2}$$

Step 1: Finding
$$\Gamma$$

 $\phi = \forall_{\pi_1 \pi_2} \cdot \neg a_{\pi_1} \lor \mathbf{F} b_{\pi_2}$
 $\phi = \forall_{\pi_1 \pi_2} \cdot \neg a_{\pi_1} \lor (true \mathbf{U} b_{\pi_2})$
 $\Gamma = \{\neg a\}$

 $constraints_{Fb} = Fb$

 $constraints_{\neg a} = \neg a$

Step 3: Check incoming traces agree with the constraints $\pi_3 = (a, c, b)$

3

$$\phi = \forall \pi_1. \forall \pi_2. a_{\pi_1} \longrightarrow \mathbf{F} b_{\pi_2}$$

Step 1: Finding
$$\Gamma$$

 $\phi = \forall_{\pi_1 \pi_2}. \neg a_{\pi_1} \lor \mathbf{F} b_{\pi_2}$
 $\phi = \forall_{\pi_1 \pi_2}. \neg a_{\pi_1} \lor (true \mathbf{U} b_{\pi_2})$
 $\Gamma = \{\neg a\}$

 $\frac{constraints_{Fb} = Fb}{constraints_{\neg a} = \neg a}$

Step 3: Check incoming traces agree with the constraints $\pi_3 = (a, c, b)$

 π_3 disagrees with the last constraint, *a* was observed in the first location

$$\phi = orall_{\pi_1\pi_2}$$
. $(a_{\pi_1} \ \mathbf{U} \ b_{\pi_2}) \ \mathbf{U} \ c_{\pi_1}$

Step 1: Finding Γ $\Gamma = \{b, \#c\}$

3

$$\phi = orall_{\pi_1\pi_2}$$
. $(a_{\pi_1} \ \mathbf{U} \ b_{\pi_2}) \ \mathbf{U} \ c_{\pi_1}$

 $\Gamma = \{b, \#c\}$ **Step 2:** Finding constraints $\pi_1 = (a, a) (ab) (ac) (ab)$

constraints =

$$\phi = orall_{\pi_1\pi_2}$$
. $(a_{\pi_1} \mathbf{U} \ b_{\pi_2}) \mathbf{U} \ c_{\pi_1}$

 $constraints = \neg(bc) \land \mathbf{X} \neg(bc) \land \mathbf{X}^2 b \land \mathbf{X}^2 \neg c$

$$\phi = orall_{\pi_1\pi_2}$$
. $(a_{\pi_1} \mathbf{U} \ b_{\pi_2}) \mathbf{U} \ c_{\pi_1}$

 $constraints = \neg(bc) \land \mathbf{X} \neg (bc) \land \mathbf{X}^2 b \land \mathbf{X}^2 \neg c \land \mathbf{X}^3 \neg b \land \mathbf{X}^3 c$

$$\phi = orall_{\pi_1\pi_2}$$
. $(a_{\pi_1} \ \mathbf{U} \ b_{\pi_2}) \ \mathbf{U} \ c_{\pi_1}$

 $\Gamma = \{b\}$ **Step 2:** Finding constraints $\pi_1 = (a \cdot a) \cdot (a \cdot a) \cdot (a \cdot b)$

 $constraints = \neg(bc) \land \mathbf{X} \neg (bc) \land \mathbf{X}^2 b \land \mathbf{X}^2 \neg c \land \mathbf{X}^3 \neg b \land \mathbf{X}^3 c \land \mathbf{X}^4 \neg b$

$$\phi = orall_{\pi_1\pi_2}$$
. $(a_{\pi_1} \mathbf{U} \ b_{\pi_2}) \mathbf{U} \ c_{\pi_1}$

 $\Gamma = \{b\}$ **Step 2:** Finding constraints $\pi_1 = (a \cdot a) \cdot (a \cdot a) \cdot (a \cdot a)$

 $constraints = \neg(bc) \land \mathbf{X} \neg (bc) \land \mathbf{X}^2 b \land \mathbf{X}^2 \neg c \land \mathbf{X}^3 \neg b \land \mathbf{X}^3 c \land \mathbf{X}^4 \neg b \land \mathbf{X}^5 b$

$$\phi = orall_{\pi_1\pi_2}$$
. $(a_{\pi_1} \ \mathbf{U} \ b_{\pi_2}) \ \mathbf{U} \ c_{\pi_1}$

 $\Gamma = \{b\}$ **Step 2:** Finding constraints $\pi_1 = (a \cdot a) \cdot (a \cdot a) \cdot (a \cdot a)$

 $constraints = \neg(bc) \land \mathbf{X} \neg (bc) \land \mathbf{X}^2 b \land \mathbf{X}^2 \neg c \land \mathbf{X}^3 \neg b \land \mathbf{X}^3 c \land \mathbf{X}^4 \neg b \land \mathbf{X}^5 b$

we count only the first occurrence of *c*

$$\phi = orall_{\pi_1\pi_2}$$
. $(a_{\pi_1} \ \mathbf{U} \ b_{\pi_2}) \ \mathbf{U} \ c_{\pi_1}$

 $constraints = \neg (bc) \land \mathbf{X} \neg (bc) \land \mathbf{X}^2 b \land \mathbf{X}^2 \neg c \land \mathbf{X}^3 \neg b \land \mathbf{X}^3 c \land \mathbf{X}^4 \neg b \land \mathbf{X}^5 b$

Step 3: Check incoming traces agree with the constraints $\pi_2 = (a, a)(ab)(ac)(ac)(ab)$

$$\phi = orall_{\pi_1\pi_2}. \ (\textbf{\textit{a}}_{\pi_1} \ \textbf{\textit{U}} \ \textbf{\textit{b}}_{\pi_2}) \ \textbf{\textit{U}} \ \textbf{\textit{c}}_{\pi_1}$$

 $constraints = \neg (bc) \land \mathbf{X} \neg (bc) \land \mathbf{X}^2 b \land \mathbf{X}^2 \neg c \land \mathbf{X}^3 \neg b \land \mathbf{X}^3 c \land \mathbf{X}^4 \neg b \land \mathbf{X}^5 b$

Step 3: Check incoming traces agree with the constraints $\pi_2 = 2$ a ab ac ac ab

$$\phi = orall_{\pi_1\pi_2}$$
. $(a_{\pi_1} \mathbf{U} \ b_{\pi_2}) \mathbf{U} \ c_{\pi_1}$

 $constraints = \neg(bc) \land \mathbf{X} \neg (bc) \land \mathbf{X}^2 b \land \mathbf{X}^2 \neg c \land \mathbf{X}^3 \neg b \land \mathbf{X}^3 c \land \mathbf{X}^4 \neg b \land \mathbf{X}^5 b$

Step 3: Check incoming traces agree with the constraints $\pi_2 = 2$ a a ab ac ac ab

$$\phi = orall_{\pi_1\pi_2}$$
. $(a_{\pi_1} \ \mathbf{U} \ b_{\pi_2}) \ \mathbf{U} \ c_{\pi_1}$

 $constraints = \neg(bc) \land \mathbf{X} \neg (bc) \land \mathbf{X}^2 b \land \mathbf{X}^2 \neg c \land \mathbf{X}^3 \neg b \land \mathbf{X}^3 c \land \mathbf{X}^4 \neg b \land \mathbf{X}^5 b$

Step 3: Check incoming traces agree with the constraints $\pi_2 = 2$ a a b ac ac ab

$$\phi = orall_{\pi_1\pi_2}$$
. $(a_{\pi_1} \ \mathbf{U} \ b_{\pi_2}) \ \mathbf{U} \ c_{\pi_1}$

 $constraints = \neg(bc) \land \mathbf{X} \neg (bc) \land \mathbf{X}^2 b \land \mathbf{X}^2 \neg c \land \mathbf{X}^3 \neg b \land \mathbf{X}^3 c \land \mathbf{X}^4 \neg b \land \mathbf{X}^5 b$

Step 3: Check incoming traces agree with the constraints $\pi_2 = 2$ a a ab ac ac ab

$$\phi = orall_{\pi_1\pi_2}$$
. $(a_{\pi_1} \ \mathbf{U} \ b_{\pi_2}) \ \mathbf{U} \ c_{\pi_1}$

 $constraints = \neg(bc) \land \mathbf{X} \neg (bc) \land \mathbf{X}^2 b \land \mathbf{X}^2 \neg c \land \mathbf{X}^3 \neg b \land \mathbf{X}^3 c \land \mathbf{X}^4 \neg b \land \mathbf{X}^5 b$

Step 3: Check incoming traces agree with the constraints $\pi_2 = 2$ a a ab ac ac ab

 π_2 does not create a violation, even though *c* is observed more than once

$$\phi = orall_{\pi_1\pi_2}$$
. $(a_{\pi_1} \mathbf{U} \ b_{\pi_2}) \mathbf{U} \ c_{\pi_1}$

 $constraints = \neg (bc) \land \mathbf{X} \neg (bc) \land \mathbf{X}^2 b \land \mathbf{X}^2 \neg c \land \mathbf{X}^3 \neg b \land \mathbf{X}^3 c \land \mathbf{X}^4 \neg b \land \mathbf{X}^5 b$

Step 3: Check incoming traces agree with the constraints $\pi_3 = (abc)(ab)(ac)(ac)(ab)$

$$\phi = orall_{\pi_1\pi_2}$$
. $(a_{\pi_1} \mathbf{U} \ b_{\pi_2}) \mathbf{U} \ c_{\pi_1}$

 $constraints = \neg (bc) \land \mathbf{X} \neg (bc) \land \mathbf{X}^2 b \land \mathbf{X}^2 \neg c \land \mathbf{X}^3 \neg b \land \mathbf{X}^3 c \land \mathbf{X}^4 \neg b \land \mathbf{X}^5 b$

Step 3: Check incoming traces agree with the constraints $\pi_3 = (abc(ab)(ab)(ac)(ac)(ab))$

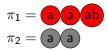
 π_3 violates our constraint as the first location has b and c

$$\phi = orall_{\pi_1 \pi_2}$$
. $(a_{\pi_1} \mathbf{U} \ b_{\pi_2}) \mathbf{U} \ c_{\pi_1}$
 $\Gamma = \{b, \#c\}$

3

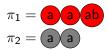
< 🗗 🕨

$$\phi = orall_{\pi_1 \pi_2}. \ egin{pmatrix} egin{pmatrix} a_{\pi_1} & m{U} & b_{\pi_2} \end{pmatrix} m{U} & c_{\pi_1} \ & \Gamma = \{b, \#c\} \end{split}$$



 $constraints_{\pi_1} = \neg(bc) \land \mathbf{X} \neg(bc) \land \mathbf{X}^2 b \land \mathbf{X}^2 \neg c$

 $constraints_{\pi_2} = \neg(bc) \land \mathbf{X} \neg(bc)$



 $constraints_{\pi_1} = \neg(bc) \land \mathbf{X} \neg(bc) \land \mathbf{X}^2 b \land \mathbf{X}^2 \neg c$

 $constraints_{\pi_2} = \neg(bc) \land \mathbf{X} \neg(bc)$

At this point, there is no constraint disagreement

$$\phi = orall_{\pi_1 \pi_2}. egin{array}{ccc} (a_{\pi_1} \ m{U} \ b_{\pi_2}) \ m{U} \ c_{\pi_1} \ m{\Gamma} = \{b, \#c\} \end{array}$$

$$\pi_1 = \begin{array}{c} a & a & ab & ac & a & ab \\ \pi_2 = \begin{array}{c} a & a & ab & ab \\ a & a & ab & ab \end{array}$$

 $constraints_{\pi_1} = \neg (bc) \land \mathbf{X} \neg (bc) \land \mathbf{X}^2 b \land \mathbf{X}^2 \neg c \land \mathbf{X}^3 \neg b \land \mathbf{X}^3 c \land \mathbf{X}^4 \neg b \land \mathbf{X}^5 b$

 $constraints_{\pi_2} = \neg(bc) \land \mathbf{X} \neg(bc) \land \mathbf{X}^2 b \land \mathbf{X}^2 \neg c \land \mathbf{X}^3 b \land \mathbf{X}^3 \neg c$

$$\phi = orall_{\pi_1 \pi_2}. egin{array}{ccc} (a_{\pi_1} \ m{U} \ b_{\pi_2}) \ m{U} \ c_{\pi_1} \ m{\Gamma} = \{b, \#c\} \end{array}$$

$$\pi_1 = \begin{array}{c} a & a & ab & ac & a & ab \\ \pi_2 = \begin{array}{c} a & a & ab & ab \\ a & a & ab & ab \end{array}$$

 $constraints_{\pi_1} = \neg (bc) \land \mathbf{X} \neg (bc) \land \mathbf{X}^2 b \land \mathbf{X}^2 \neg c \land \mathbf{X}^3 \neg b \land \mathbf{X}^3 c \land \mathbf{X}^4 \neg b \land \mathbf{X}^5 b$

 $constraints_{\pi_2} = \neg(bc) \land \mathbf{X} \neg(bc) \land \mathbf{X}^2 b \land \mathbf{X}^2 \neg c \land \mathbf{X}^3 b \land \mathbf{X}^3 \neg c$

There is a violation among constraints for π_1 and π_2

Presentation outline

Finite Semantics for LTL

2 Challenges in RV for HyperLTL

Rewriting-based RV Algorithm for Alternation-free HyperLTL Formulas
 Identifying the Propositions of Interest
 Rewriting based RV for ELTL

Rewriting-based RV for FLTL

Conclusion

Summary

- Monitorability for HyperLTL
- Finite semantics for HyperLTL
- Rewriting-based RV algorithm for alternation-free HyperLTL

Future Work

- Automata-based monitoring (hyper monitors!)
- RV for Alternating HyperLTL

3

Questions

Thank You!

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

3