
1

Using Genetic
Programming for
Software Reliability

Prof. Doron A. Peled
Bar Ilan University,
Israel

RV2016

What is genetic algorithms
[Holland71]?

n  Heuristic search strategy.
n  Beam search: progresses

from one set of points
[“generation” of
“candidates”] to another, no
backtracking.

n  Uses ideas from genetic
evolution:
reproduction, mutation,
probabilistic process.

n  Parallelizable!
RV2016 2

What can we do with a
candidate?

Reproduction: candidate will continue to
the next generation (possibly with the
following changes).
Mutation: will make some probabilistic
local changes.
Crossover: a pair of new candidates are
formed by inheriting properties from a
pair of parents.
RV2016 3

Representation

n  Each candidate is a string of fixed
length corresponding to a chromosome.

 1100111000111100100010111011111

RV2016 4

Crossover

n  Take two candidates and decide which
position of letters to take from which
parent.

 01100101 10010111

RV2016 5

Crossover

n  Take two candidates and decide which
position of letters to take from which
parent.

 01100101 10010111

RV2016 6

Crossover

n  Take two candidates and decide which
position of letters to take from which
parent.

 01100101 10010111

 01110111 10000101

RV2016 7

Mutation

RV2016 8

n  With some small probability p, decide
whether to change each letter.

 010101010

Mutation

RV2016 9

n  With some small probability p, decide
whether to change each letter.

 010101010

Mutation

RV2016 10

n  With some small probability p, decide
whether to change each letter.

 010101010

 000111010

Use fitness

n  Fitness value (say, between 0 and 100)
represents an estimate of how good is a
candidate.

n  It is important that fitess valus are dense
(“smooth landscape”) to be able to
distinguish between candidates.

n  Candidates propagate from one generation to
the next one proportional to the ratio of their
fitness and the average generation fitness.

RV2016 11

Use probability for:

n  Generating initial candidates.
n  Deciding which candidates will reproduce to the

next generation. The probability is the relation
between fitness value and average fitness of the
generation.

n  Deciding which candidates to apply crossover on,
then the positions to select from each parent.

n  Deciding whether to mutate a position in the string
with some small probability p.

RV2016 12

Combining it all

1.  Generate at random the candidates of first generation.
2.  Calculate fitness for candidates.
3.  Stop if a “good” candidate was found.
4.  Select candidates for reproduction based on fitness .

Apply probabilistically mutation and crossover.
5.  Repeat from Step 2 unless generation limit exceeded.
6.  Can repeat process with a new random seed or change

parameters.

RV2016 13

Some math “schema theorem”.

n  Consider only mutation (no crossover).
n  We assume that a good solution is built from

“good” building blocks (schemas) of the form
e.g., 1*0*1, where 0 and 1 are constants,
and * is a “wild card”.

n  Thus, the scheme 1*0*1 has 4 candidates.
n  There are 3n schemes (but 222 subsets).

RV2016 14

Math (to show its not magic)…
n  The expected number of times a candidate x will propagate

to the next generation t+1 is f (x)/g (t): proportional to its
fitness f (x) divided by the average generation fitness g (t).

n  N(s,t) – number of candidates of schema s in generation t.
u(s,t) – average fitness of candidates of schema s in
generation t.

n  Expected number of schema s candidates propagating to
next generation:

n 
 ∑x�s,t ↑▒​f (x)/g (t)   =​ u(s,t) �
N(s,t) /g (t)  RV2016 15

Math…
 ∑x�s�,t � ↑▒​f (x)/g (t)   = ​u(s,t)
� N(s,t) /g (t) 

n  Order of scheme s: O(s) – number of non * elements.
n  Probability of not ruining the scheme by mutation: (1-p) O(s)
 So, including the effect of mutation, we have

 N(s,t +1)= ​u(s,t) � N(s,t) � (1−p) O(s) /
g (t) 
 Can grow exponentially with the generations.

RV2016 16

Some more good points

n  Propagation can be parallelized.
n  Propagation works on multiple schemes.
n  If this did not convince you, well, some

say its completely bullshit…

RV2016 17

Classical example: solving a
maze

n  Candidates: string
represents directions
00=left, 01=right,
10=down, 11=up.

n  Fitness: follow a path.
When cannot continue,
use next move. Calculate
the vertical+horizontal
distance to end point.
Fitness is reverse
proportional to this value.

RV2016 18

Use for testing [Godefroid,Khurshid]

n  Test cases are represented as sequences of
choices. [some concerns about fixed size
representation].

n  Fitness: shrinks with the number of enabled
transitions along the test path; smaller number of
transitions often lead to an error.
Grows with the number of inline assertions along
the path.
Grows with the number of messages passed.

n  Use crossover to generate new test cases.

RV2016 19

List of applications for genetic
algorithms

n  Airlines revenue management[1]
n  Audio watermark insertion/detection
n  Automated design = computer-automated design
n  Automated design of mechatronic systems using bond graphs and

genetic programming (NSF)
n  Automated design of industrial equipment using catalogs of exemplar lever patterns
n  Automated design of sophisticated trading systems in the financial sector
n  Bayesian inference links to particle methods in Bayesian statistics and hidden Markov chain

models[2][3]
n  Code-breaking, using the GA to search large solution spaces of ciphers for the one correct

decryption.[15]
n  Computer architecture: using GA to find out weak links in approximate computing
n  …….

RV2016 20

My favorite application

n  Find a strategy for Nash-style games, e.g.,
n  Rock-Paper-Scissors,
n  Prisoner’s dilemma,
n  Actually: financial market algorithms.

RV2016 21

Why not synthesize the software
directly from specification?

Specification System

Model checking/
testing

Yes!! No +
Counterexample

Revision

Specification

Synthesis

System

22 RV2016

Complexity of sequential synthesis
is high

n  2EXPTIME Complete for LTL specification.
n  … But, there are provable systems where the

number of states is doubly exponential.
n  But must the size of a circuit that implements

such a system be also doubly exponential?
n  [Fearnly+Peled+Schewe]:

If we knew, we could have decided whether
EXPSPACE=2EXPTIME or not.

23 RV2016

Concurrent synthesis
n  Several processes, with some communication

architecture. We want the system to satisfy some
LTL property.

n  [Pnueli+Rosner]: It is undecidable even to check
whether there is a system with the given
architecture that satisfies the LTL property.

n  But under some strong assumptions (e.g.,
hierarchical systems) we can solve this
[Pnueli+Rosner], [Finkbeiner+Schewe], [Thiagarajan
+Madhusudan], [Kupferman+Vardi].

24 RV2016

Mostly, negative results about
synthesis of concurrent systems.

n  Few positive results: …,
it is decidable for some
very limited
architectures, mostly
when there is a
hierarchy between the
processes.

n  … in these cases, the
complexity is very high
…

How to construct a model from
the specification?

n  Synthesis
n  Transforms spec. directly to a model that satisfies it.
n  Hard (complexitywise) and sometimes undecidable.

n  Brute-force enumeration [Bar David, Taubenfeld]
n  All possible programs of a specific domain and size are

generated and model-checked.
n  All existing solutions will eventually be found.
n  Highly time-intensive. Not practical for programs with

more than few lines of code.

n  Sketching [Lazema]: small variants, resolved
through SAT solving.

26 RV2016

Genetic Programming

n  A methodology for automatic programming inspired by
Darwinian evolution [Koza 92].

n  Used for automatic generation of programs in various
fields.

n  Mostly used for optimization related problems.
n  Fitness is usually calculated by checking program

performance against test cases.
n  Less used for problems with a strict specification.
n  There is no notion of fixed size chromosome. One usualy

uses syntax trees.
n  There are also schema theorems for genetic

programming.
27 RV2016

Main Steady-state GP
Algorithm

1.  Create initial program population.
2.  Randomly generate µ programs.
3.  Create λ new programs by applying genetic

operations to the above µ programs.
4.  Calculate fitness function for µ + λ programs,

and use it to select µ new programs.
5.  Replace the old µ programs by the selected

ones.
6.  Repeat steps 2-5 until either:

a.  a perfect solution is found, or
b.  maximum allowed number of iterations is reached.

28 RV2016

Combining GP & Model Checking

GP
Engine

Enhanced
Model

Checker

User 1. Specification 2. Configuration

3. Initial population

4. Verification results

5. New programs

6. Final Model / Results

29 RV2016

Program Representation

n  Programs are represented
as trees.

n  Internal nodes represent
expressions or
instructions with
parameters (assignment,
while, if, block).

n  Terminal nodes represent
constants or expressions
without any parameter
(0, 1, 2, me, other).

n  Strongly-typed GP is used
[Montana 95].

while

assign !=

0 A[] A[] 1

me 2

While (A[2] != 0)
A[me] = 1

30 RV2016

Initial Population Creation

n  Population usually contains 100 – 1000
programs.

n  Program are created recursively using the
“grow” method [KOZA 92].
n  The root is randomly selected from instruction

nodes.
n  Offspring are randomly selected from allowed

node or terminals as long as rules are preserved.
n  If max tree depth is reached, a terminal must be

chosen.
31 RV2016

Genetic Operations

n  At each iteration of the GP algorithm,
the following genetic operations are
applied to the selected programs:
n  Reproduction – programs are copied

without any change
n  Mutation
n  Crossover

32 RV2016

Mutation Operation
n  The main operation we use.
n  Allows performing small modifications to

an existing program by the following
method:
n  Randomly choose a program node

(internal, or leaf).
n  According to the node type, apply one of

the following operations with respect to the
chosen node (strong typing must be kept):

33 RV2016

Replacement Mutation type (a)

n  Replace the sub-
tree rooted by
node with a new
randomly
generated sub-
tree.

n  Can change a
single node or
an entire sub-
tree. While (A[2] != 0)

 A[me] = 1
While (A[2] != 0)
 A[me] = A[0]

while

assign !=

0 A[] A[]

me 2

1 A[]

0

34 RV2016

Insertion Mutation type (b)

n  Add an immediate
parent to the selected
node.

n  Randomly create other
offspring to the new
parent, if needed.

n  According to the
selected parent type,
can cause:
n  Insertion of code,
n  Wrapping code with a

while loop,
n  Extending Boolean

expressions.

while

!=

0 A[]

2

assign

A[] 1

me

While (A[2] != 0)
 A[me] = 1

while

!=

0 A[]

2

assign

A[] 1

me

block

while

!=

0 A[]

2

assign

A[] 1

me

block

assign

A[] other

2

While (A[2] != 0)
 A[2] = other
 A[me] = 1

35 RV2016

Reduction Mutation Type (c)

n  Replace the selected node by one of its
offspring.

n  Delete the remaining offspring of the
node.

n  Has the opposite effect of the previous
insertion mutation, and reduces the
program size.

36 RV2016

Deletion Mutation Type (d)

n  Delete the sub-
tree rooted by
the node.

n  Update
ancestors
recursively.

assign

A[] 1

me

while

!=

0 A[]

2

While (A[2] != 0)
 A[me] = 1

empty while

!=

0 A[]

2

37 RV2016

Mutation testing
n  Mutation testing is used to check whether a test suite is

good.
n  Use mutations on the program, and check whether there

is at least one test in the suite that can separate the
behavior of the code with the mutation.

n  Instead of providing fitness to the mutated code using a
test suite, provide fitness to the test suite by mutating the
code.

n  Hypothesis: most programming errors are related to
making a small error in switching something.

n  If there is not, extend the test suite (e.g., based on path
conditions, or GK genetic algorithm).

RV2016 38

Crossover Operation

n  Creates new programs by merging building
blocks of two existing programs.

n  Crossover steps are:
n  Randomly choose a node from the 1st program.
n  Randomly choose a node from the 2nd program,

that has the same type as the 1st node.
n  Exchange between the sub-trees rooted by the

two nodes, and use the two newly created
programs.

39 RV2016

Crossover Example
if

!=

1 A[]

me

assign

A[] other

0

block

assign

me A[]

2

empty while

==

A[] other

me

A[2] = me
while (a[me] == other)

If (A[me] != 1)
 a[0] = other

A[2] = me
a[0] = other

If (A[me] != 1)
 while (a[me] == other)

40 RV2016

Crossover (“excuses”)
n  Heavily used by traditional GP [Koza].
n  Tries to mimic biological process, but
n  Unlike biology reproduction (and unlike GA), GP

lacks the notion of “genes” [Banzhaf et al. 01].
n  Often acts only as a macro-mutation.
n  Various methods were developed in order to turn

it into a more fruitful operation.
n  Still, not a significant operation for small

programs like those of Mutual Exclusion.
n  Maybe my Phd student just did not want to

implement it…
41 RV2016

Selection

n  At each iteration, selection is applied to all µ + λ
programs (over-production selection).

n  Program are selected using a fitness-proportional
(roulette) method [Holland 92].

42 RV2016

Building Program’s State-graph
n  Each state consists of values of variables, program

counters, buffers, etc.
n  Edges represent atomic transitions caused by program

instructions.

n  Can be built by a DFS
algorithm.

n  Can be decomposed into
SCCs [Tarjan 72].

43 RV2016

Example: The Mutual
Exclusion Problem

n  Originally described by [Dijkstra 65].
n  Many variants and solutions exist.
 while wi do

 Pre Protocol
 Critical Section
 Post Protocol

 end while
n  We want to automatically generate correct

code for the pre and post protocol parts.
44 RV2016

Specification

n  We use Linear Temporal Logic (LTL) [Pnueli 77]
to define specification properties.

n  LTL formulas are interpreted over an infinite
sequences of states, and consist of:
n  Propositional variables,
n  Logical connectives, such as ¬ , ∧ , ∨ , →, and
n  Temporal operators, such as:

n  ◊(p) – p will eventually occur.
n  �(p) – p always occurs.

n  A model M satisfies a formula φ (M╞ φ) if every
(fair) run of M satisfies φ.

Specification
n  Safety: ¬(p0 in CS0 ∧ p1 in CS1)
n  Liveness: (pi in preCSi ->pi in CSi)
n  Not enough:

solution based on
alternation requires
always willing to
enter critical
section.

n  That’s why we added wi
to control process’ wishing
to enter CS.

RV2016 46

L0:While True do
 NC0:wait(Turn=0);
 CR0:Turn=1
endwhile ||
L1:While True do
 NC1:wait(Turn=1);
 CR1:Turn=0
endwhile

Instrument code as in RV to
check LTL properties

n  Use randomization for scheduling.
n  Run k experiments where only one process wants to enter its

critical section. In k1 of them it succeeds.
n  Run m experiments where both processes want. In m1 of

them only one succeeds, in m2 both succeeds. m1 + m2 ≤ m.
n  Choose a, b, c, a+c=100, b < c.

n  Fitness: a × ​k1/k +𝑏 � ​m1/m +𝑐 � ​m2/m 
n  Further separate k1, m1, m2 to cases where entering once or

multiple times.

RV2016 47

Model Checking and GP

n  Can standard model checking results be used as a GP
fitness function?

n  Yes, but [Johnson 07]: a fitness function with just two
values per proerpty is a poor one. Need more fitness levels.
n  No execution satisfies the property.
n  Some executions satisfy the property.
n  Every prefix of a bad execution can be continued to a

good execution in the program (so, we made infinitely
many “bad” choices”).

n  Statistically, at least/less than some portion of the
executions satisfy the property.

n  All the executions satisfy the property.
48 RV2016

Converting specification to ω-
automaton

n  Every LTL property can be converted into a Buchi
automaton with a size exponential to the LTL
formula size [Vardi & Wolper 94].

n  For deterministic Streett automata, a
determinization process is also required [Safra
88]. Expensive!! Avoid for probabilistic similar
properties…

n  May result in a doubly exponential blowup from
LTL property.

The Model Checking Process
[Vardi & Wolper 86]

n  Both model and speciation are converted to
ω-automata over the same alphabet.

n  The alphabet is 2AP, where AP denotes a set
of atomic propositions that may hold on the
system states.

n  Every word accepted by M (a fair run)
should be accepted by the spec, therefore
we have to check whether: L(M) ⊆ L(φ(.

Model Checking and GP

n  Can standard model checking results be used as
a GP fitness function?

n  Yes, but it was done so far with a limited
success [Johnson 07].

n  A fitness function with just two values is a poor
one.

n  We wish to analyze the model checking graph in
order to quantify the level of satisfaction.

Fitness Level 0

n  All SCCs are empty
(not accepting).

n  Property is never
satisfied.

n  No scheduler
choices are
needed.

A

E D

C B

Empty SCC

Accepting SCC

Fitness Level 1

n  At least one accepting
SCC.

n  At least one empty bottom
SCC.

n  Finite number of scheduler
choices can lead the
execution into the empty
BSCC (D in the example).

n  The program will stay
there forever.

n  BSCC with only 1 node
means a deadlock → gets
worse score.

A

E D

C B

Empty SCC

Accepting SCC

Fitness Level 2

n  All BSCCs are
accepting.

n  At least one empty
SCC.

n  Infinite scheduler
choices are needed
for keeping the
program inside the
empty SCC (B in the
example).

A

E D

C B

Empty SCC

Accepting SCC

Fitness Level 3

n  All executions are
accepting.

n  This can be checked
by converting the
negation of the
property, and
checking the
emptiness of the
intersection.

Overall Fitness Function

n  Fitness levels & scores are calculated for each specification
property.

n  How to merge into a single fitness function?
n  Naïve summing can bias the results, since some properties

may be trivially satisfied when more basic properties are
violated.

n  Thus, spec. properties are divided into levels, starting from
level 1 for most basic properties.

n  As long as not all properties at level i are satisfied,
properties at higher level gets fitness of 0.

Parsimony

n  GP programs tend to grow up over time to the maximal
allowed tree size (“bloating”).

n  To avoid that, we use parsimony as a secondary fitness
measure.

n  Number of program nodes * small factor is subtracted
from the fitness score.

n  The factor should be carefully chosen.
n  Should encourage programs to reduce their size, but
n  Should not harm the evolutionary process.

n  Therefore, programs cannot get a score of 100, but only
get close to it. The run can be stopped when all properties
are satisfied.

n  Programs can be reduces either by mutations, or directly
by detecting dead code by the model checking process,
and then removing it.

“Vacuity”

n  A special care is needed for implication properties of
the form �(p → ◊q).

n  Some (or all) executions may be vacuously satisfied if
p never happens.

n  We are usually interested only on runs when p
eventually occurs.

n  Other runs are neither good nor bad. They are
irrelevant.

n  Thus, in these cases, the program automata is first
intersected with the property ◊p.

58 RV2016

The Mutual Exclusion Problem

n  Many variants and solutions exist.
n  Modeled using the following program parts

inside a loop in each process:
n  Non Critical Section
n  Pre Protocol
n  Critical Section
n  Post Protocol

n  We wish to automatically generate correct
code for the pre and post protocol parts.

59 RV2016

Spec. Properties
n  The specification includes the following LTL properties:

n  Some properties are weaker/stronger than others, but
they produce additional levels!

60 RV2016

Runs Configuration

n  The following parameters were used:
n  Population size: 150
n  Max number of iterations: 2000

In the following examples, we will show only the body
of the while loop for one process (the other is
symmetric).

61 RV2016

An Example of a Run (1st variant)

n  Randomly created.
n  Does not satisfy mutual exclusion property.
n  Higher level properties are set to 0.

Score: 0.0

62 RV2016

An Example of a Run (1st variant)

n  Randomly created.
n  While loop guarantees mutual exclusion.
n  Only process 0 can enter the critical section.

Score: 66.77

63 RV2016

An Example of a Run (1st variant)

n  Last line changed by a mutation.
n  The naïve mutual exclusion algorithm.
n  Processes uses a “turn” flag, but depend on each other.

Score: 75.77

64 RV2016

An Example of a Run (1st variant)

n  An important building block common to many algorithms.
n  Each process set its own flag and wait for other’s flag, but
n  The flag is not turned off correctly.
n  Might eventually deadlock.

Score: 70.17

65 RV2016

An Example of a Run (1st variant)

n  Last line is replaced by a mutation.
n  Now, process 0 correctly turns its flag off.
n  Property 5 is fully satisfied

Score: 76.10

66 RV2016

An Example of a Run (1st variant)

n  A single node is changed by a mutation.
n  Both processes turn off their flag.
n  Properties 4 and 5 are fully satisfied.
n  Still, deadlock occurs if both processes try to enter

simultaneously.

Score: 92.77

67 RV2016

An Example of a Run (1st variant)

n  A mutation added a line to the empty while loop.
n  This turns the deadlock into a livelock, and causes a slight

fitness improvement.

Score: 93.20

68 RV2016

An Example of a Run (1st variant)

n  Another line is added to the while loop.
n  No more dead or live locks, but property can still be

violated by some infinite scheduler choices.

Score: 94.37

69 RV2016

An Example of a Run (1st variant)

n  Created by some random mutations.
n  All properties are satisfied.
n  Still, not the shortest solution.

Score: 96.50

70 RV2016

An Example of a Run (1st variant)

n  Created by more mutations.
n  The shortest found algorithm.
n  Identical to the known “One bit protocol” [Burns

& Lynch 93].

Score: 97.10

71 RV2016

More experiments

n  Successfully found Dekker's algorithm.
[Dijkstra 65].

n  Successfully found Peterson’s algorithm.
[Peterson & Fisher 77].

n  Found a shorter algorithm than
Dekker's.

72 RV2016

Performance

n  First variant was easiest to solve.
n  Other variants are much harder to find.
n  Still, much better than brute-force methods.
n  Checked some more complicated requirement

on efficiency (number of times of checking
variables). Found improvied original
algorithm!

73 RV2016

MCGP – A Software Synthesis Tool Based on
Model Checking and Genetic Programming

74 RV2016

Tool Evaluation

¡  Using the tool, solutions to a series of problems:

n  Classical mutual exclusion algorithms

n  Novel mutual exclusion algorithms

n  Parameterized leader election protocols

n  Discovering and correcting a bug in α-core protocol

¡  Synthesis takes between seconds to hours.

¡  Can benefit from modern multi-core machines

75 RV2016

Synthesizing parametric
programs (yes we can!)

n  Dealing with parametric protocols running on various
configurations and architectures:
n  Variable number of processes,
n  Various communication topologies.

n  Undicidable [Apt,Kozen] for algorithms in a ring.
n  Ah, then we synthesize exactly such an algorithm!!

76 RV2016

Synthesizing parametric
programs (yes we can!)

n  First test case: leader in a
unidirectional ring. Each process in
a ring has a value and by
exchanging messages in one
direction. Find the process with
highest value.

n  Model checking is undecidable:
performs checks on specific values.

n  Succeeded to find n2 protocol
[Lellan,Chang,Roberts] but not n ×
logn [Itai, Rodeh, Hirschberg,
Sinclair].

77 RV2016

Synthesizing parametric
protocols

n  Perform model checking for particular cases: in the leader
election problem, with certain ring sizes.

n  Coevolution: remember instances (sizes) that caused more
candidates to fail, and recheck them.

n  No complete guarantee: terminate if enough checks
passed.

n  Model checking as enhanced testing: comprehensive
verification for specific values.

RV2016 78

Process types
¡  Concurrent programs are built from process types
¡  Each process type

§  Has its own set of building blocks
§  Can have multiple running instances
§  Has a code skeleton, containing

▪  Static parts defined by the user
▪  Dynamic / empty part that have to be synthesized

¡  A special init process type is responsible for
§  Initialization of global variables
§  Creation of instances of the other process types

79 RV2016

Various Synthesis Goals

¡  By setting program parts as static or
dynamic, various goals can be achieved

¡  All parts are set to static
§  Nothing to synthesize. Just running the

enhanced model checking algorithm
¡  Setting some processes as dynamic

§  The tool will try to synthesize dynamic parts
▪  Can synthesize parts from scratch
▪  Can synthesize only specific parts
▪  Can replace and correct required parts if given

80 RV2016

Model checking as enhanced
testing

n  For parametric programs, model checking is undecidable
[Apt,Kozen].

n  We can use testing but will have very little confidence.
n  Perform model checking for specific instances (paraemters,

architectures).
n  Model checking as an “extended testing”: check

comprehensively for particular parameters. Higher
confidence than just testing.

n  Use genetic programming to select good instances!

RV2016 81

Coevolution

¡  Alternate between generating synthesis
candidates and parameters for checking it.

¡  Different fitness functions for the two
goals.

¡  Fitness for checking/testing parameters can
increase with the number of candidates it
manages to “destroy”.

82 RV2016

Code Correction

n  The goal is correcting existing protocols.
n  The protocol’s code is divided by the user

into:
n  Static parts that should remain unchanged,
n  Dynamic parts that can be improved or replaced

by the synthesis process.

83 RV2016

Motivating Example: The α-core
Protocol

n  Intended for allowing multiparty interactions between
distributed processes.

n  Published at COORDINATION 2002 conf., and
Concurrency - Practice and Experience Journal.

n  Two types of processes: Participants, Coordinators

n  Multiple participants may perform a shared interaction,
which is managed by a dedicated coordinator process.

84 RV2016

The α-core Protocol

n  Each process has its own state machine
n  Processes communicate via asynchronous message

passing
n  The protocol should satisfy the following:

n  Exclusion between conflicting interactions.
n  If an interaction is committed, all of its participants

must execute it.
n  Any enabled interaction is eventually committed or

canceled.
n  We showed that this requirement can be

violated!
85 RV2016

Synthesizing Violating
Architectures

n  Main Idea:
n  Architectures can be generated by some

initialization code. Thus, they can be synthesized
similarly to normal code.

n  Define building blocks from which such code
portions can be built.

n  Use genetic programming for the automatic
generation and evolution of versions of the
initialization code.

n  Define a fitness function that will guide us to the
target architecture (violating the spec.).

86 RV2016

Initialization code for α-core
Architectures

n  We define the following building blocks:
n  Participant, Coordinator – constants of type

proc_type
n  CreateProc(proc_type) – dynamically

create new process of type proc_type
n  Connect(participant_id, coordinator_id) –

connects between a particular participant
and coordinator

87 RV2016

Initialization code for α-core
Architectures - Example

CreateProc(Participant)	
CreateProc(Participant)	
CreateProc(Participant)	
CreateProc(Coordinator)	
CreateProc(Coordinator)	
CreateProc(Coordinator)	
Connect(1,	4)	
Connect(1,	5)	
Connect(2,	6)	
Connect(3,	4)	
Connect(3,	5)	
Connect(3,	6)	

•  The	code	on	the	le+	generates	the	architecture	on	the	right:	

88 RV2016

Coevolution: Evolving Violating
Architectures

n  Search of architectures is guided by a fitness
function, assigning a score for each
generated architecture.

n  Based on model checking, but the goal is to
falsify the specification.

n  Highest score is given when at least one LTL
property is violated

n  Lower scores can be assigned to architectures
which are “close” to violating a property.

89 RV2016

Finding the α-core Bug

n  Each coordinator process uses a variable n
counting its currently active offers.

n  n should be decreased to 0 when an interaction
is canceled.

n  We suspected that this property might be
violated in some rare cases, and fed the protocol
and this property into our tool.

n  The tool indeed discovered an architecture under
which the property can be violated.

n  The violation can lead to a livelocks and
deadlocks in the algorithm.

90 RV2016

The Found Architecture and
Counterexample

n is
wrongly

decreased
twice

Found
architecture

91 RV2016

Correcting the α-core Bug

n  The tool first found a correction for the above architecture.
n  However, this correction was refuted by another discovered

architecture.
n  After a series of corrections and refutations, a final (and simple)

solution was found, which could not be refuted.
n  The solution includes the following code replacement:

If n > 0 then
n := n - 1

If sender ∈ shared then
n := n - 1

92 RV2016

Conclusions

n  Formal methods (Testing, RV, Model
Checking) have severe limitations:
n  High complexity.
n  Decidable under some strict conditions.

n  Synthesis is even more difficult!
n  Use genetic programming to enhance the

performance and these methods and
alleviate restrictions.

RV2016 93

More conclusions

n  Genetic algorithms: heuristic beam search
technique that combines ideas from evolution.

n  Can be used to solve, e.g., optimization
problems.

n  Can be used to generate test cases.
n  Genetic programming: similar ideas, but the

objects are programs (represented as trees).

RV2016 94

Even more conclusions

n  Can be used to synthesize concurrent code.
n  Can be used to synthesize parametric code.
n  Can be used to improve and correct code.
n  Model checking of genetically selected

parameters as extended testing.
n  Many other applications, e.g., Optimizing

code [Harman]
RV2016 95

