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What is genetic algorithms 
[Holland71]? 

n  Heuristic search strategy. 
n  Beam search: progresses 

from one set of points 
[“generation” of 
“candidates”] to another, no 
backtracking. 

n  Uses ideas from genetic 
evolution:  
reproduction, mutation, 
probabilistic process. 

n  Parallelizable! 
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What can we do with a 
candidate? 

Reproduction: candidate will continue to 
the next generation (possibly with the 
following changes). 
Mutation: will make some probabilistic 
local changes. 
Crossover:  a pair of new candidates are 
formed by inheriting properties from a 
pair of parents. 
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Representation 

n  Each candidate is a string of fixed 
length corresponding to a chromosome. 

 
   1100111000111100100010111011111 
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Crossover 

n  Take two candidates and decide which 
position of letters to take from which 
parent. 

             01100101  10010111  
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Crossover 

n  Take two candidates and decide which 
position of letters to take from which 
parent. 

             01100101  10010111  
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Crossover 

n  Take two candidates and decide which 
position of letters to take from which 
parent. 

             01100101  10010111  
 
             01110111  10000101 
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Mutation 
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n  With some small probability p, decide 
whether to change each letter. 

                   010101010  
 
 



Mutation 
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n  With some small probability p, decide 
whether to change each letter. 

                   010101010  
 
 



Mutation 
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n  With some small probability p, decide 
whether to change each letter. 

                   010101010  
 
                   000111010 
 



Use fitness 

n  Fitness value (say, between 0 and 100) 
represents an estimate of how good is a 
candidate. 

n  It is important that fitess valus are dense 
(“smooth landscape”) to be able to 
distinguish between candidates. 

n  Candidates propagate from one generation to 
the next one proportional to the ratio of their 
fitness and the average generation fitness. 
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Use probability for: 

n  Generating initial candidates. 
n  Deciding which candidates will reproduce to the 

next generation. The probability is the relation 
between fitness value and average fitness of the 
generation. 

n  Deciding which candidates to apply crossover on, 
then the positions to select from each parent. 

n  Deciding whether to mutate a position in the string 
with some small probability p. 
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Combining it all 

1.  Generate at random the candidates of first generation. 
2.  Calculate fitness for candidates. 
3.  Stop if a “good” candidate was found. 
4.  Select candidates for reproduction based on fitness . 

Apply probabilistically mutation and crossover. 
5.  Repeat from Step 2 unless generation limit exceeded. 
6.  Can repeat process with a new random seed or change 

parameters. 
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Some math “schema theorem”.  

n  Consider only mutation (no crossover). 
n  We assume that a good solution is built from 

“good” building blocks (schemas) of the form 
e.g., 1*0*1, where 0 and 1 are constants, 
and * is a “wild card”. 

n  Thus, the scheme 1*0*1 has 4 candidates. 
n  There are 3n schemes (but 222 subsets). 
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Math (to show its not magic)… 
n  The expected number of times a candidate x will propagate 

to the next generation t+1 is f (x )/g (t ): proportional to its 
fitness f (x) divided by the average generation fitness g (t ). 

n  N(s,t ) – number of candidates of schema s in generation t. 
u(s,t ) – average fitness of candidates of schema s in 
generation t. 

n  Expected number of schema s candidates propagating to 
next generation:  

n   
             ∑x�s,t     ↑▒​f (x )/g (t )   =​ u(s,t ) � 
N(s,t ) /g (t )  RV2016 15 



Math… 
                     ∑x�s�,t � ↑▒​f (x )/g (t )   = ​u(s,t ) 
� N(s,t ) /g (t )  
 
n  Order of scheme s: O(s ) – number of non * elements. 
n  Probability of not ruining the scheme by mutation: (1-p) O(s )  
    So, including the effect of mutation, we have  

             N(s,t +1)= ​u(s,t ) � N(s,t ) � (1−p) O(s ) /
g (t )  
            Can grow exponentially with the generations. 
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Some more good points 

n  Propagation can be parallelized. 
n  Propagation works on multiple schemes. 
n  If this did not convince you, well, some 

say its completely bullshit… 
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Classical example: solving a 
maze 

n  Candidates: string 
represents directions 
00=left, 01=right, 
10=down, 11=up. 

n  Fitness: follow a path. 
When cannot continue, 
use next move. Calculate 
the vertical+horizontal 
distance to end point. 
Fitness is reverse 
proportional to this value. 
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Use for testing [Godefroid,Khurshid] 

n  Test cases are represented as sequences of 
choices. [some concerns about fixed size 
representation]. 

n  Fitness: shrinks with the number of enabled 
transitions along the test path; smaller number of 
transitions often lead to an error. 
Grows with the number of inline assertions along 
the path. 
Grows with the number of messages passed. 

n  Use crossover  to generate new test cases. 
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List of applications for genetic 
algorithms 

n  Airlines revenue management[1] 
n  Audio watermark insertion/detection 
n  Automated design = computer-automated design 
n  Automated design of mechatronic systems using bond graphs and 

genetic programming (NSF) 
n  Automated design of industrial equipment using catalogs of exemplar lever patterns 
n  Automated design of sophisticated trading systems in the financial sector 
n  Bayesian inference links to particle methods in Bayesian statistics and hidden Markov chain 

models[2][3] 
n  Code-breaking, using the GA to search large solution spaces of ciphers for the one correct 

decryption.[15] 
n  Computer architecture: using GA to find out weak links in approximate computing  
n  ……. 
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My favorite application 

n  Find a strategy for Nash-style games, e.g., 
n  Rock-Paper-Scissors, 
n  Prisoner’s dilemma, 
n  Actually: financial market algorithms. 
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Why not synthesize the software 
directly from specification? 

Specification System 

Model checking/ 
testing 

Yes!! No + 
Counterexample 

Revision 

Specification 

Synthesis 

System 
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Complexity of sequential synthesis 
is high 

n  2EXPTIME Complete for LTL specification. 
n  … But, there are provable systems where the 

number of states is doubly exponential. 
n  But must the size of a circuit that implements 

such a system be also doubly exponential? 
n  [Fearnly+Peled+Schewe]: 

If we knew, we could have decided whether 
EXPSPACE=2EXPTIME or not. 
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Concurrent synthesis 
n  Several processes, with some communication 

architecture. We want the system to satisfy some 
LTL property. 

n  [Pnueli+Rosner]: It is undecidable even to check 
whether there is a system with the given 
architecture that satisfies the LTL property. 

n  But under some strong assumptions (e.g., 
hierarchical systems) we can solve this 
[Pnueli+Rosner], [Finkbeiner+Schewe], [Thiagarajan
+Madhusudan], [Kupferman+Vardi]. 
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Mostly, negative results about 
synthesis of concurrent systems. 

n  Few positive results: …, 
it is decidable for some 
very limited 
architectures, mostly 
when there is a 
hierarchy between the 
processes. 

n  … in these cases, the 
complexity is very high 
… 



How to construct a model from 
the specification? 

n        Synthesis 
n  Transforms spec. directly to a model that satisfies it. 
n  Hard (complexitywise) and sometimes undecidable. 

n    Brute-force enumeration [Bar David, Taubenfeld] 
n  All possible programs of a specific domain and size are 

generated and model-checked. 
n  All existing solutions will eventually be found. 
n  Highly time-intensive. Not practical for programs with 

more than few lines of code. 

n     Sketching [Lazema]: small variants, resolved 
through SAT solving. 
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Genetic Programming 
 

n  A methodology for automatic programming inspired by 
Darwinian evolution [Koza 92]. 

n  Used for automatic generation of programs in various 
fields. 

n  Mostly used for optimization related problems. 
n  Fitness is usually calculated by checking program 

performance against test cases. 
n  Less used for problems with a strict specification. 
n  There is no notion of fixed size chromosome. One usualy 

uses syntax trees. 
n  There are also schema theorems for genetic 

programming. 
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Main Steady-state GP 
Algorithm 

1.  Create initial program population. 
2.  Randomly generate µ programs. 
3.  Create λ new programs by applying genetic 

operations to the above µ programs. 
4.  Calculate fitness function for µ + λ programs, 

and use it to select µ new programs. 
5.  Replace the old µ programs by the selected 

ones. 
6.  Repeat steps 2-5 until either: 

a.  a perfect solution is found, or 
b.  maximum allowed number of iterations is reached. 
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Combining GP & Model Checking 

GP  
Engine 

Enhanced 
Model  

Checker 

User 1. Specification 2. Configuration 

3. Initial population 

4. Verification results 

5. New programs 

6. Final Model / Results 
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Program Representation 

n  Programs are represented 
as trees. 

n  Internal nodes represent 
expressions or 
instructions  with 
parameters (assignment, 
while, if, block). 

n  Terminal nodes represent 
constants or expressions 
without any parameter 
(0, 1, 2, me, other). 

n  Strongly-typed GP is used 
[Montana 95]. 

while 

assign != 

0 A[ ] A[ ]  1 

me 2 

While (A[2] != 0) 
A[me] = 1 
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Initial Population Creation 

n  Population usually contains 100 – 1000 
programs. 

n  Program are created recursively using the 
“grow” method [KOZA 92]. 
n  The root is randomly selected from instruction 

nodes. 
n  Offspring are randomly selected from allowed 

node or terminals as long as rules are preserved. 
n  If max tree depth is reached, a terminal must be 

chosen. 
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Genetic Operations 

n  At each iteration of the GP algorithm, 
the following genetic operations are 
applied to the selected programs: 
n  Reproduction – programs are copied 

without any change 
n  Mutation 
n  Crossover 
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Mutation Operation 
n  The main operation we use. 
n  Allows performing small modifications to 

an existing program by the following 
method: 
n  Randomly choose a program node 

(internal, or leaf). 
n  According to the node type, apply one of 

the following operations with respect to the 
chosen node (strong typing must be kept): 
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Replacement Mutation type (a) 

n  Replace the sub-
tree rooted by 
node with a new 
randomly 
generated sub-
tree. 

n  Can change a 
single node or 
an entire sub-
tree. While (A[2] != 0) 

     A[me] = 1 
While (A[2] != 0) 
     A[me] = A[0] 

while 

assign != 

0 A[ ] A[ ]  

me 2 

1 A[ ] 

0 
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Insertion Mutation type (b) 

n  Add an immediate 
parent to the selected 
node. 

n  Randomly create other 
offspring to the new 
parent, if needed. 

n  According to the 
selected parent type, 
can cause: 
n  Insertion of code, 
n  Wrapping code with a 

while loop, 
n  Extending Boolean 

expressions. 

while 

!= 

0 A[ ]  

2 

assign 

A[ ] 1 

me 

While (A[2] != 0) 
    A[me] = 1 

while 

!= 

0 A[ ]  

2 

assign 

A[ ] 1 

me 

block 

while 

!= 

0 A[ ]  

2 

assign 

A[ ] 1 

me 

block 

assign 

A[ ] other 

2 

While (A[2] != 0) 
    A[2] = other 
    A[me] = 1 
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Reduction Mutation Type (c) 

n  Replace the selected node by one of its 
offspring. 

n  Delete the remaining offspring of the 
node. 

n  Has the opposite effect of the previous 
insertion mutation, and reduces the 
program size. 
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Deletion Mutation Type (d) 

n  Delete the sub-
tree rooted by 
the node. 

n  Update 
ancestors 
recursively. 

assign 

A[ ] 1 

me 

while 

!= 

0 A[ ]  

2 

While (A[2] != 0) 
     A[me] = 1 

empty while 

!= 

0 A[ ]  

2 
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Mutation testing 
n  Mutation testing is used to check whether a test suite is 

good.  
n  Use mutations on the program, and check whether there 

is at least one test in the suite that can separate the 
behavior of the code with the mutation. 

n  Instead of providing fitness to the mutated code using a 
test suite, provide fitness to the test suite by mutating the 
code. 

n  Hypothesis: most programming errors are related to 
making a small error in switching something. 

n  If there is not, extend the test suite (e.g., based on path 
conditions, or GK genetic algorithm). 
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Crossover Operation 

n  Creates new programs by merging building 
blocks of two existing programs. 

n  Crossover steps are: 
n  Randomly choose a node from the 1st program. 
n  Randomly choose a node from the 2nd program, 

that has the same type as the 1st node. 
n  Exchange between the sub-trees rooted by the 

two nodes, and use the two newly created 
programs. 
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Crossover Example 
if 

!= 

1 A[ ]  

me 

assign 

A[ ] other 

0 

block 

assign 

me A[ ]  

2 

empty while 

== 

A[ ] other 

me 

A[2] = me 
while (a[me] == other) 

If (A[me] != 1) 
     a[0] = other 

A[2] = me 
a[0] = other 

If (A[me] != 1) 
     while (a[me] == other) 
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Crossover (“excuses”) 
n  Heavily used by traditional GP [Koza]. 
n  Tries to mimic biological process, but 
n  Unlike biology reproduction (and unlike GA), GP 

lacks the notion of “genes” [Banzhaf et al. 01]. 
n  Often acts only as a macro-mutation. 
n  Various methods were developed in order to turn 

it into a more fruitful operation. 
n  Still, not a significant operation for small 

programs like those of Mutual Exclusion. 
n  Maybe my Phd student just did not want to 

implement it… 
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Selection 

n  At each iteration, selection is applied to all µ + λ 
programs (over-production selection). 

n  Program are selected using a fitness-proportional 
(roulette) method [Holland 92]. 
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Building Program’s State-graph 
n  Each state consists of values of variables, program 

counters, buffers, etc. 
n  Edges represent atomic transitions caused by program 

instructions. 

n  Can be built by a DFS 
algorithm. 

n  Can be decomposed into 
SCCs [Tarjan 72]. 
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Example: The Mutual 
Exclusion Problem 

n  Originally described by [Dijkstra 65]. 
n  Many variants and solutions exist. 
    while wi do 

  Pre Protocol 
  Critical Section 
  Post Protocol 

    end while 
n  We want to automatically generate correct 

code for the pre and post protocol parts. 
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Specification 

n  We use Linear Temporal Logic (LTL) [Pnueli 77] 
to define specification properties. 

n  LTL formulas are interpreted over an infinite 
sequences of states, and consist of: 
n  Propositional variables, 
n  Logical connectives, such as ¬ , ∧ , ∨ , →, and 
n  Temporal operators, such as: 

n  ◊(p) – p will eventually occur. 
n  �(p) – p always occurs. 

n  A model M satisfies a formula φ (M╞ φ) if every 
(fair) run of M satisfies φ. 



Specification 
n  Safety: ¬(p0 in CS0 ∧ p1 in CS1) 
n  Liveness: (pi in preCSi ->pi in CSi) 
n  Not enough: 

solution based on 
alternation requires 
always willing to 
enter critical 
section. 

n  That’s why we added wi 
to control process’ wishing 
to enter CS. 
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L0:While True do 
   NC0:wait(Turn=0); 
   CR0:Turn=1 
endwhile || 
L1:While True do 
   NC1:wait(Turn=1); 
   CR1:Turn=0 
endwhile 



Instrument code as in RV to 
check LTL properties 

n  Use randomization for scheduling. 
n  Run k experiments where only one process wants to enter its 

critical section. In k1 of them it succeeds. 
n  Run m experiments where both processes want. In m1 of 

them only one succeeds, in m2 both succeeds. m1  + m2 ≤ m.       
n  Choose a, b, c, a+c=100, b < c. 

n  Fitness:   a × ​k1/k +𝑏 � ​m1/m +𝑐 � ​m2/m  
n  Further separate k1, m1, m2  to cases where entering once or 

multiple times. 
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Model Checking and GP 

n  Can standard model checking results be used as a GP 
fitness function? 

n  Yes, but [Johnson 07]: a fitness function with just two 
values per proerpty is a poor one. Need more fitness levels. 
n  No execution satisfies the property. 
n  Some executions satisfy the property. 
n  Every prefix of a bad execution can be continued to a 

good execution in the program (so, we made infinitely 
many “bad” choices”). 

n  Statistically, at least/less than some portion of the 
executions satisfy the property. 

n  All the executions satisfy the property. 
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Converting specification to ω-
automaton 

n  Every LTL property can be converted into a Buchi 
automaton with a size exponential to the LTL 
formula size [Vardi & Wolper 94]. 

n  For deterministic Streett automata, a 
determinization process is also required [Safra 
88]. Expensive!! Avoid for probabilistic similar 
properties… 

n  May result in a doubly exponential blowup from 
LTL property. 



The Model Checking Process  
[Vardi & Wolper 86] 

n  Both model and speciation are converted to 
ω-automata over the same alphabet. 

n  The alphabet is 2AP, where AP denotes a set 
of atomic propositions that may hold on the 
system states. 

n  Every word accepted by M (a fair run) 
should be accepted by the spec, therefore 
we have to check whether: L(M) ⊆ L(φ(. 



Model Checking and GP 

n  Can standard model checking results be used as 
a GP fitness function? 

n  Yes, but it was done so far with a limited 
success [Johnson 07]. 

n  A fitness function with just two values is a poor 
one. 

n  We wish to analyze the model checking graph in 
order to quantify the level of satisfaction. 



Fitness Level 0 

n  All SCCs are empty 
(not accepting). 

n  Property is never 
satisfied. 

n  No scheduler 
choices are 
needed. 

A 

E D 

C B 

Empty SCC 

Accepting SCC 



Fitness Level 1 

n  At least one accepting 
SCC. 

n  At least one empty bottom 
SCC. 

n  Finite number of scheduler 
choices can lead the 
execution into the empty 
BSCC (D in the example). 

n  The program will stay 
there forever. 

n  BSCC with only 1 node 
means a deadlock → gets 
worse score. 

A 

E D 

C B 

Empty SCC 

Accepting SCC 



Fitness Level 2 

n  All BSCCs are 
accepting.  

n  At least one empty 
SCC. 

n  Infinite scheduler 
choices are needed 
for keeping the 
program inside the 
empty SCC (B in the 
example). 

A 

E D 

C B 

Empty SCC 

Accepting SCC 



Fitness Level 3 

n  All executions are 
accepting. 

n  This can be checked 
by converting the 
negation of the 
property, and 
checking the 
emptiness of the 
intersection. 



Overall Fitness Function 

n  Fitness levels & scores are calculated for each specification 
property. 

n  How to merge into a single fitness function? 
n  Naïve summing can bias the results, since some properties 

may be trivially satisfied when more basic properties are 
violated. 

n  Thus, spec. properties are divided into levels, starting from 
level 1 for most basic properties. 

n  As long as not all properties at level i are satisfied, 
properties at higher level gets fitness of 0. 



Parsimony 

n  GP programs tend to grow up over time to the maximal 
allowed tree size (“bloating”). 

n  To avoid that, we use parsimony as a secondary fitness 
measure. 

n  Number of program nodes * small factor is subtracted 
from the fitness score. 

n  The factor should be carefully chosen. 
n  Should encourage programs to reduce their size, but 
n  Should not harm the evolutionary process. 

n  Therefore, programs cannot get a score of 100, but only 
get close to it. The run can be stopped when all properties 
are satisfied. 

n  Programs can be reduces either by mutations, or directly 
by detecting dead code by the model checking process, 
and then removing it. 



“Vacuity” 

n  A special care is needed for implication properties of 
the form �(p → ◊q). 

n  Some (or all) executions may be vacuously satisfied if 
p never happens. 

n  We are usually interested only on runs when p 
eventually occurs. 

n  Other runs are neither good nor bad. They are 
irrelevant. 

n  Thus, in these cases, the program automata is first 
intersected with the property ◊p. 
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The Mutual Exclusion Problem 

n  Many variants and solutions exist. 
n  Modeled using the following program parts 

inside a loop in each process: 
n  Non Critical Section 
n  Pre Protocol 
n  Critical Section 
n  Post Protocol 

n  We wish to automatically generate correct 
code for the pre and post protocol parts. 
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Spec. Properties 
n  The specification includes the following LTL properties: 

n  Some properties are weaker/stronger than others, but 
they produce additional levels! 
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Runs Configuration 

n  The following parameters were used: 
n  Population size: 150 
n  Max number of iterations: 2000 

 
 

In the following examples, we will show only the body 
of the while loop for one process (the other is 
symmetric). 
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An Example of a Run (1st variant) 

n  Randomly created. 
n  Does not satisfy mutual exclusion property. 
n  Higher level properties are set to 0. 

Score: 0.0 
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An Example of a Run (1st variant) 

n  Randomly created. 
n  While loop guarantees mutual exclusion. 
n  Only process 0 can enter the critical section. 

 

Score: 66.77 
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An Example of a Run (1st variant) 

n  Last line changed by a mutation. 
n  The naïve mutual exclusion algorithm. 
n  Processes uses a “turn” flag, but depend on each other. 

 

Score: 75.77 
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An Example of a Run (1st variant) 

n  An important building block common to many algorithms. 
n  Each process set its own flag and wait for other’s flag, but 
n  The flag is not turned off correctly. 
n  Might eventually deadlock. 

 

Score: 70.17 
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An Example of a Run (1st variant) 

n  Last line is replaced by a mutation. 
n  Now, process 0 correctly turns its flag off. 
n  Property 5 is fully satisfied 

 

Score: 76.10 
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An Example of a Run (1st variant) 

n  A single node is changed by a mutation. 
n  Both processes turn off their flag. 
n  Properties 4 and 5 are fully satisfied. 
n  Still, deadlock occurs if both processes try to enter 

simultaneously. 

 

Score: 92.77 
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An Example of a Run (1st variant) 

n  A mutation added a line to the empty while loop. 
n  This turns the deadlock into a livelock, and causes a slight 

fitness improvement. 
 

 

Score: 93.20 
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An Example of a Run (1st variant) 

n  Another line is added to the while loop. 
n  No more dead or live locks, but property can still be 

violated by some infinite scheduler choices. 
 

 

Score: 94.37 
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An Example of a Run (1st variant) 

n  Created by some random mutations. 
n  All properties are satisfied. 
n  Still, not the shortest solution. 

 

Score: 96.50 
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An Example of a Run (1st variant) 

n  Created by more mutations. 
n  The shortest found algorithm. 
n  Identical to the known “One bit protocol” [Burns 

& Lynch 93]. 

 

Score: 97.10 
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More experiments 

n  Successfully found Dekker's algorithm. 
[Dijkstra 65]. 

n  Successfully found Peterson’s algorithm. 
[Peterson & Fisher 77]. 

n  Found a shorter algorithm than 
Dekker's. 
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Performance 

n  First variant was easiest to solve.  
n  Other variants are much harder to find. 
n  Still, much better than brute-force methods. 
n  Checked some more complicated requirement 

on efficiency (number of times of checking 
variables). Found improvied original 
algorithm! 
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MCGP – A Software Synthesis Tool Based on 
Model Checking and Genetic Programming 
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Tool Evaluation 

¡  Using the tool, solutions to a series of problems: 

n  Classical mutual exclusion algorithms 

n  Novel mutual exclusion algorithms 

n  Parameterized leader election protocols 

n  Discovering and correcting a bug in α-core protocol 

¡  Synthesis takes between seconds to hours. 

¡  Can benefit from modern multi-core machines 
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Synthesizing parametric 
programs (yes we can!) 

n  Dealing with parametric protocols running on various 
configurations and architectures: 
n  Variable number of processes, 
n  Various communication topologies. 

n  Undicidable [Apt,Kozen] for algorithms in a ring. 
n  Ah, then we synthesize exactly such an algorithm!! 
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Synthesizing parametric 
programs (yes we can!) 

n  First test case: leader in a 
unidirectional ring. Each process in 
a ring has a value and by 
exchanging messages in one 
direction. Find the process with 
highest value. 

n  Model checking is undecidable: 
performs checks on specific values.  

n  Succeeded to find n2 protocol 
[Lellan,Chang,Roberts] but not n × 
logn [Itai, Rodeh, Hirschberg, 
Sinclair]. 
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Synthesizing parametric 
protocols 

n  Perform model checking for particular cases: in the leader 
election problem, with certain ring sizes. 

n  Coevolution: remember instances (sizes) that caused more 
candidates to fail, and recheck them. 

n  No complete guarantee: terminate if enough checks 
passed. 

n  Model checking as enhanced testing: comprehensive 
verification for specific values. 
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Process types 
¡  Concurrent programs are built from process types 
¡  Each process type  

§  Has its own set of building blocks 
§  Can have multiple running instances 
§  Has a code skeleton, containing 

▪  Static parts defined by the user 
▪  Dynamic / empty part that have to be synthesized 

¡  A special init process type is responsible for 
§  Initialization of global variables 
§  Creation of instances of the other process types 
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Various Synthesis Goals 

¡  By setting program parts as static or 
dynamic, various goals can be achieved 

¡  All parts are set to static 
§  Nothing to synthesize. Just running the 

enhanced model checking algorithm 
¡  Setting some processes as dynamic 

§  The tool will try to synthesize dynamic parts 
▪  Can synthesize parts from scratch 
▪  Can synthesize only specific parts 
▪  Can replace and correct required parts if given 
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Model checking as enhanced 
testing 

n  For parametric programs, model checking is undecidable 
[Apt,Kozen]. 

n  We can use testing but will have very little confidence. 
n  Perform model checking for specific instances (paraemters, 

architectures).  
n  Model checking as an “extended testing”: check 

comprehensively for particular parameters. Higher 
confidence than just testing. 

n  Use genetic programming to select good instances! 
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Coevolution 

¡  Alternate between generating synthesis 
candidates and parameters for checking it. 

¡  Different fitness functions for the two 
goals. 

¡  Fitness for checking/testing parameters can 
increase with the number of candidates it 
manages to “destroy”. 
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Code Correction 

n  The goal is correcting existing protocols. 
n  The protocol’s code is divided by the user 

into: 
n  Static parts that should remain unchanged, 
n  Dynamic parts that can be improved or replaced 

by the synthesis process. 

83 RV2016 



Motivating Example: The α-core 
Protocol 

n  Intended for allowing multiparty interactions between 
distributed processes. 

n  Published at COORDINATION 2002 conf., and 
Concurrency - Practice and Experience Journal. 

n  Two types of processes: Participants, Coordinators 

n  Multiple participants may perform a shared interaction, 
which is managed by a dedicated  coordinator process. 
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The α-core Protocol 

n  Each process has its own state machine 
n  Processes communicate via asynchronous message 

passing 
n  The protocol should satisfy the following: 

n  Exclusion between conflicting interactions. 
n  If an interaction is committed, all of its participants 

must execute it. 
n  Any enabled interaction is eventually committed or 

canceled. 
n  We showed that this requirement can be 

violated! 
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Synthesizing Violating 
Architectures 

n  Main Idea: 
n  Architectures can be generated by some 

initialization code. Thus, they can be synthesized 
similarly to normal code. 

n  Define building blocks from which such code 
portions can be built. 

n  Use genetic programming for the automatic 
generation and evolution of versions of the 
initialization code. 

n  Define a fitness function that will guide us to the 
target architecture (violating the spec.). 
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Initialization code for α-core 
Architectures  

n  We define the following building blocks: 
n  Participant, Coordinator – constants of type 

proc_type 
n  CreateProc(proc_type) – dynamically 

create new process of type proc_type 
n  Connect(participant_id, coordinator_id) – 

connects between a particular participant 
and coordinator 
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Initialization code for α-core 
Architectures - Example 

CreateProc(Participant)	
CreateProc(Participant)	
CreateProc(Participant)	
CreateProc(Coordinator)	
CreateProc(Coordinator)	
CreateProc(Coordinator)	
Connect(1,	4)	
Connect(1,	5)	
Connect(2,	6)	
Connect(3,	4)	
Connect(3,	5)	
Connect(3,	6)	

 
 
 

•  The	code	on	the	le+	generates	the	architecture	on	the	right:	
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Coevolution: Evolving Violating 
Architectures 

n  Search of architectures is guided by a fitness 
function, assigning a score for each 
generated architecture. 

n  Based on model checking, but the goal is to 
falsify the specification. 

n  Highest score is given when at least one LTL 
property is violated 

n  Lower scores can be assigned to architectures 
which are “close” to violating a property. 
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Finding the α-core Bug 

n  Each coordinator process uses a variable n 
counting its currently active offers. 

n  n should be decreased to 0 when an interaction 
is canceled. 

n  We suspected that this property might be 
violated in some rare cases, and fed the protocol 
and this property into our tool. 

n  The tool indeed discovered an architecture under 
which the property can be violated. 

n  The violation can lead to a livelocks and 
deadlocks in the algorithm. 
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The Found Architecture and 
Counterexample 

n is 
wrongly 

decreased 
twice 

Found 
architecture 
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Correcting the α-core Bug 

n  The tool first found a correction for the above architecture. 
n  However, this correction was refuted by another discovered 

architecture. 
n  After a series of corrections and refutations, a final (and simple) 

solution was found, which could not be refuted. 
n  The solution includes the following  code replacement: 

If n > 0 then  
n := n - 1 

If sender ∈ shared then  
n := n - 1 
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Conclusions 

n  Formal methods (Testing, RV, Model 
Checking) have severe limitations:  
n  High complexity. 
n  Decidable under some strict conditions. 

n  Synthesis is even more difficult! 
n  Use genetic programming to enhance the 

performance and these methods and 
alleviate restrictions. 
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More conclusions 

n  Genetic algorithms: heuristic beam search 
technique that combines ideas from evolution. 

n  Can be used to solve, e.g., optimization 
problems. 

n  Can be used to generate test cases. 
n  Genetic programming: similar ideas, but the 

objects are programs (represented as trees). 
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Even more conclusions 

n  Can be used to synthesize concurrent code. 
n  Can be used to synthesize parametric code. 
n  Can be used to improve and correct code. 
n  Model checking of genetically selected 

parameters as extended testing. 
n  Many other applications, e.g., Optimizing 

code [Harman] 
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