https://runtimeverification.com

runtime
verification

Technology and Products

Overview

Runtime Verification
Company

Licensed by University of lllinois at Urbana-Champaign

Scientific Field

Co-pioneered with NASA colleagues and collaborators
Products and Demos

RV-Match
RV-Predict

RV-Monitor
Conclusion

The Company

Runtime Verification, Inc.

Description of Company '

Runtime Verification, Inc. (RV): startup
company aimed at bringing the best ideas and
technology developed by the runtime verification
community to the real world as mature and

competitive products; licensed by the University
of Illinois at Urbana-Champaign (UIUC), USA.

Mission: To offer the best possible solutions for
reliable software development and analysis.

o - Ranked

RV technology is licensed by UIUC
VR RV employees are former UIUC students
Ry e

e ;.‘:_' ~ :'

Technology

Runtime verification is a new field aimed at
verifying computing systems as they execute

Good scalability, rigorous, no false alarms

We helped shape the field
Co-Founded the Runtime Verification conference
>100 RV publications
Raised $7M+ funding to develop technology

The Field

Runtime Verification

What is Runtime Verification (RV)?

Subfield of program analysis and verification
So is static analysis (SA)
SA and RV complement each other

Main idea of RV is different from that of SA:

Execute program to analyze
Using instrumentation or in a special runtime environment

Observe execution trace
Build model from execution trace
Analyze model
Steps above may be combined (e.g., online analysis)

Recall Static Analysis

(including model-checking)

Code Model
//i"ﬁ: main'() { \
fkf;riﬁt a = - Bug 1
for (1= i< U Extract Analyze » Bug2
ieturn a;
N3 /
Advantages: Limitations:
+ good code coverage - undecidable problem, so
+ early in development - false positives/negatives or

+ mature field - does not scale

Runtime Verification

Event Trace Highly customized
for property of
interest
Code
/G;: main() {
g?fr?.in: a =
%8; (i = 0; 1< ;1 E;
S ug1
return a;
U Analyze » Bug2
Advantages:

+ precise (no false alarms)
+ good scalability and rigor
+ recovery possible

Limitations:
- code must be executable
- less code coverage

Addressing the Limitations

Code must be executable

Use complementary, static analysis, earlier in process
Use symbolic execution (RV-Match)
Less code coverage

Integrate RV tools with your existing testing
infrastructure: your unit tests should already provide
good code coverage; invoke RV tools on each test

Systematic re-execution: cover new code each time

Symbolic execution covers many inputs at once

The Products

Runtime Verification

Runtime Verification Products

(

)
U

’ runtime

verification
match

runtime
~ verification
predict

runtime
verification
monitor

meverincation.com

RV-Match is a semantics-based automatic debugger
for common and subtle C errors, and an automatic
dynamic checker for all types of ISO C11 undefinedness.
- C (mature); Java and JavaScript (prototypes)

RV-Predict is an automatic dynamic data-race detector
for Java, which is sound (no false positives) and maximal
(no other sound dynamic tool can find more races).

- Java (mature), C/C++ with interrupts (prototype)

RV-Monitor is a runtime monitoring tool that
allows for checking and enforcement of safety
properties over the execution of your software.
- Java (prototype), C/C++ (prototype)

Runtime Verification Products

Coverage vs. Performance vs. Expressiveness

Big triangle: all

 \ofpntime runtime behaviors
monitor
One path only; of your program

0-100% overhead;
complex properties ‘|

’ runtime
verification
match

runtime From one path to complete
"e"gfg(tl'i?:': coverage / verification; any

) roperties; may require user input
Maximal number of prop ; Mmay req p

causally equivalent paths
predicted from one path;
1-10%x overhead;

races, atomicity,
deadlocks

Semantics-based runtime verification

RV-Match

RV-Match Overview

Code (6-int-overflow.c)
RV-Match gives you:

int main() {

short int a = 1;: anautomatic debugger for subtle bugs

int i; other tools can't find, with no false positives
For Lo mi s A * seamless integration with unit tests, build

} ' infrastructure, and continuous integration
return a; * aplatform for analyzing programs, boosting

standards compliance and assurance

Conventional
compilers do not :
q 6-int-overflow.c
detect problem ./a.out
$

S kcc 6-int-overflow.c

RV-Match'’s kcc tool precisely
detects and reports error, and

$./a.out points to ISO Caa standard

Error: IMPL-CCV2
Description: Conversion to signed integer outside the range that can be represented.
Type: Implementation defined behavior.
See also: C11 sec. 6.3.1.3:3, J.3.5:1 item 4
at main(6-int-overflow.c:29)

RV-Match Approach

Execute program within precise mathematical model of ISO Ca1
Build abstract program state model during execution
Analyze each event, performing consistency checks on state

Event Trace Are all ISO Caa
rules matched?

R If “no” then error
Code <
o
/int main() { 0
short int a =
int i Abstract State Model >
for (i = 0; i < 15; i++) { S (G
} = <C
return a; About 120
\i / semantic state

components

RV-Match: Bigger Picture

Test-case " Deductive |
Parser generation program
\ J :
. verifier

{[Interpreter}} Formal Language Definition ([Model }}

(Syntax and Semantics) L checker
C, C++, Java, JavaScript, etc.

o g e

Debugger

Formal Language Definitions

To define programming languages formally,
we use the academic K tool and notation

http://kframework.org

Developed in the Formal Systems Laboratory (my
research group) at the University of Illinois

Open source

Mopt

omplete K Definition of KernelC

KERNELC-SYNTAX

IMPORTS K-LATEX + PL-ID + PL-INT
SYNTAX Exp = Exp + Exp [stnct

SYNTAX St

sYv

AAC

TAX Lis{Decild)

KT

R

R

®

Exp 1= Exp [sinct
Exp <= Exp [strict
Exp < Exp [stict

Exp % Exp [strict

i(Exp) St
1 Exp) Stmr &
while(Exp) S

return Exp

iLC-DESUGARED-SYNTAX
TEX

LAl
kTS KERNELC-SYNTAX

VE-E?0:1
E, &8 E E\1E
Bl Bsm B 1: E

NULL = O
TO=100)

nt « Pointerld = int Pointerld
#include< Simis > = Stmts
EoLE CE 4 E

scanf(*d", & £)

nt « Poi

INtX=E;=1ntX; X=£
stdio.h = {}

stdlib.h = (}

int)) (s

MODULE KERNELC-SEMANT
onTs K-SHARED
MPORTS K-+ KERNELC-DESUGARED-SYNTAX + PL-CONVERSION PL-RANDOM
CONFIGURATION

S

fram) e
C-HC) y C -
— = =

e e
D @& 0

RULE
(
RULE
RULE
RULE Ly 4 0o Iy]
Ve LNl D%l when oy 124, 0
RULE Bool2int (I
RULE [y < 1y — Bool2Int { 1y <pu 12)
e L - Bool2Int (1, ==
RULE [y 1= Iy = Bool2int (Iy =gy 1)
RULE 7 if() else
RULE 1T(1)-elseSt—5 whenl==r 0
RULE 11(1) St when g 0
RuLE while(E) St)
\ ITCET {8 while(£ St
fw _Jou|
st/ printf(*xd;®, 1) s
void _ 5 *siring INE2SEING (1) +50rumy

Feturnvoid ;

SYNTAX Listltem ::= Id & Map # K

1

Env

Sts J _eraseKiabel (int_, X1) — VI

X int X \I(u.ﬁ“ s

X#Em # K

U E—
RULE return

RULE \
()
n m
RULE random()
_ FandomRandom { 777 ¢
m X
UL random(1}
\ void
CONTEXT: =

SYNTAX Val

SYNTAX Exp !
SYNTAX K = Listf Declld]

List{ Pointerld)

Pem

SYNTAX Listf Val)

SYNTAX Listf Exp,
END MODULE

LE KERNELC-SIMPLE-MALLOC
oRTS K
RTS KERNELC-SEMANTICS

RULE e
[==

END MODLU

Complete K Definition of KernelC

MODULE KERNELC-SYNTAX MoDULE KERNELC-SEMANTICS SYNTAX Listltem ::= Id & Map # K
IMPORTS K-LATEX + PL-ID + PL-INT porTS K-SHARED [m
SYNTAX Exp = Exp + Exp [stnict MPORTS K-+ KERNELC-DESUGARED-SYNTAX + PL-CONVERSION PL-RANDOM —

Env

CONFIGURATION

J _eraseKiabel (int_, X1) — VI

!
| ~—

N : o | fm) frma__
'\

frns), i _ ¢
CO)C - . .) (. X - int X \I(wﬁ“
S e .
.) 0 0
CONTEXT: int - =
. (X .y
£ (0 { 3
&)
inte)malloc(Exp sizeof (int)) [strict

free(Exp) [suict

p [strict(2)]
Expl (s)

Syntax declared using annotated BNF =

SYNTAX St = Exp ; [strict

SYNTAX Exp ::=

SYNTAX ®
SYNTAX): —):
p p
Bortom
; TR T pepm——
SYNTAX List{Dectld] | . _
Jx out]_ -
RULE / printf(*%d;", /) [s
SYNTAX (
\ void _ S +51ing INE2SLANG (1) +50rvng
- RULE N s, N—=N_N N
B fw SYNTAX List{Val)
wuLe (" scanf(*%d*, N} § ¢
. A END MODULE
. MobuLE KERNELC-SIMPLE-MALLOC
MACRO E, && E E\1E 0 RULE { ! IMPORTS KERNELC-SEMANTICS

MACRO By || Bz = E; 715k _) o

(= l foml

MACRO 1(E)

MACRO NULL = O

Macko 1) =1(()) RULE {} —+ t

MACKO A0t + Pointerld = 10t Poimierld ® Ste = St Sts
MACRO #include< Stmis >

MACRO . [E CE 4 woie AlatXeXld S LE)
MACKO scanf(*ad",& £) = scanf(*3d*, £) :

wako tnten int Pooerid = B RULE vold X X1 {)

St returnvold ;

MACRO Nt X=F; =intX; X=F;

MACRO stdio.h = {}

MACKO stdlib.h = () 21

Complete K Definition of KernelC

wwwwww

Configuration given as a nested cell structure.
Leaves can be sets, multisets, lists, maps, or syntax

\\\\\\

\\\\\\\

22

Complete K Definition of KernelC

MODULE KERNELC-SYNTAX MoDULE KERNELC-SEMANTICS SYNTAX Listltem ::= Id & Map # K
IMPORTS K-LATEX + PL-ID + PL-INT porTS K-SHARED [m
SYNTAX Exp = Exp + Exp [stnict MPORTS K-+ KERNELC-DESUGARED-SYNTAX + PL-CONVERSION PL-RANDOM ST R -
(v \ o

CONFIGURATION
Sts J _eraseKiabel (int_, X1) — VI

q
| —
{

funs), eny .
C - ‘/J,ﬂ . - C - \alnx\\l(\v.);f:
) S . IR et -

|
[s !
RULE \
freet Fup) fass :)
e \ oy .‘
(() :
srandom(Exp) [strict]
R Semantic rules given contextuall
SYNTAX [
. k env |
SYNTAX —t N——
YNTAS. Lin(Ponertd] o L Pointert X — ‘/) X —> — {
SYNTAX List{Dectbd] [_ —_— —_—
x) i
RuLE (printf(*%d;*, 1) ¢ A {
SYNTAX \ '
void \ ‘/ ‘/
END MODULE @ {)
wuLe / scanf(*%d*, N} {
MobuL LC-DESUGARED-SYNTAX —= %
IMPORTS KERNELC-SYNTAX h '
Nacko TEE701
MACRO B 88 By — By 7 E2 1 0 ro (“scanf(*3d*,6X)3 ¢
o 1 B rule
s o <k> X =V =>V .</k>
= =
MACRO ()~ 1)) RULE {} =+ b
p—
y <env>. X |-> (=> V) .</env>
ARO[CE +E Rute (X MA(Su) ¢ A —
\ . ’,,\’»——M(‘(LN
MACRO scanf(*sd" &« E) = scanf(*sd*,) h
MACRO int « P int Pointerld = E RULE vold X X/ { 4 B

St returnvold ;

MACRO Nt X=F; =intX; X=F;

MACRO stdio.h = {}

MACRO stdlib.h = (} 23

Several large languages were recently defined in K:
Java 1.4: by Bogdanas etal

800+ program test suite that covers the semantics

JavaScript ESg: by Park etal

Passes existing conformance test suite (2872 pgms)

Found (confirmed) bugs in Chrome, IE, Firefox, Safari
Caa: Ellison etal

It defines the ISO Ca1 standard

Including all undefined behaviors

K Configuration and Definition of C

... plus ~2500 rules ... &Cells!}

Advantages of RV-Match Approach

No need to re-implement tools as language changes

Easy to customize tools
E.g., embedded C for a specific micro-controller

Programming languages continuously evolve (Cgo — Cgg
—>(C11— ..;o0rJavai1.4—=Javag—...—=>Java8 —..)
Tools are correct by construction

Tools are language-independent and can produce
correctness certificates based on language semantics only

Language definitions are open-source and public
Experts worldwide can “validate” them
No developer “interpretation” of language meaning (e.g., C)

Does it Work?

Let's use RV-Match with (extended) C11 semantics
Goal: catch undefined behavior!
You should always avoid undefined behavior in your code!!!
Undefined behavior — lack of portability, security risks, non-determinism
Wrapped RV-Match[C11] as an ICO Ca1 compliant drop-in
replacement of C compilers (e.g., gcc), called kcc
Example: what does the following return?

int main() { 4 with gcc
int x = 0 3 with clang (LLVM)
return (x = 1) + (x = 2); |ISO C11: undefined!

} kcc reports error

Why Undefined Behavior Matters?

And, because of that, your code tested on
PC will not port on embedded platform,
will crush when you change compiler, and
RATIONAT Will give you different results with even the
rorTir Same compiler but different options ...

.nentations are at liberty to enforce the mandated limits.

irit of C. The Committee kept as a major goal to preserve

pirit of C. There are many facets of the spirit of C, but the essenc
sty sentiment of the underlying principles upon which the C languag
some of the facets of the spirit of C can be summarized in phrases like

+Trust the programmer.

PROGRAMMING
LANGUAGE

eDon’t prevent the programmer from doing what needs to be done.

eKeep the language small and simple.
e Provide only one way to do an operation.

eMake 1t fast, even if it 1s not guaranteed to be portable

SBucon ress The last proverb needs a little explanation. The potential for efficient «

generation is one of the most important strengths of C. To help ensure that no ¢
explosion occurs for what appears to be a very simple operation, many operat

RV-Match DEMO

GO tOo https://runtimeverification.com/match tO
download RV-Match (currently only Ca1 version
available); kcc and then execute the C programs
under examples/demo in the given order

Most of the examples above are also discussed, with
detailed comments, at

https://runtimeverification.com/match/docs/runningexamples

You can also run the Toyota ITC benchmark:
https://runtimeverification.com/match/docs/benchmark

Does it Really Work?

Let’s Evaluate i1t!

Evaluated RV-Match on the Toyota ITC benchmark, aimed at
quantitatively evaluating static analysis t{

By Shin’ichi Shiraishi and collaborators ... report compares six
different static analysis

ISSRE'14 original paper, compared six tools; pz
Press release by Grammatech, available at PRI t0OIs against benchmarks

Independent Study NamegCodeSonar Best in Cl ass pfter Head-to-Head In €l g ht SafetY' re l ated
Toyota InfoTechnology Center Compares Six StatiCe e e C oo oo P™¥erall Ranking Categ O rl eS Of Softwa re

GEZQ 2 I (Pee | = .
defect types: Static
ITHACA, N.Y., Feb. 12, 2015 /PRNewswire/ -- , a leading maker of tools that improve and More by
accelerate embedded software development today announced that CodeSonar has been ranked first overall in .
a study titled Q eE T , performed by the T T) M e m O ry, Dyn a m I C
The study was conducted to determine WhICh statlc analysis tools excel at finding safety problems in code and
its findings and accompanying benchmarks were just made available by John Regehr, Associate Professor of M e m O ry N U m e ri Ca |
/ /
Resource Management,
Pointer-Related,
Concurrency, ...

Computer Science at the University of Utah.

The report compares six different static analysis tools against benchmarks in eight safety-related categories of
software defect types: Static Memory, Dynamic Memory, Numerical, Resource Management, Pointer-Related,
Concurrency, Inappropriate Code, and Miscellaneous. The tools are then ranked in each category using a
productivity metric that captures the ability of the tool to find real problems and simultaneously suppress false
positives.

"Static analysis is an important, innovative, and powerful technique for finding and preventing critical problems
in software," said Shinichi Shiraishi, Senior Researcher and lead author of the study. "We're excited to share
these benchmarks with the global community of software developers, to help them find the right static analysis
tool to ensure the safety of their code."

——T
In addition to being ranked best overall, CodeSonar received the following rankings:

Toyota ITC Benchmark Paper

- Static Analysis Tools -

Shiraishi etal published revised version in ISSRE 2015
1276 programs; 3 static analysis tools compared

Grammatech CodeSonar wins again (numbers below from ISSRE'15 paper)

Shiraishi et al., RV-Match |GrammaTech| MathWorks MathWorks GCC Clang
ISSRE a5 CodeSonar | Code Prover Bug Finder

DR FPR PM [DR FPR PM (DR FPR PM (DR FPR PM |DR FPR PM
Static memory 100 100 100|97 100 98 (97 100 98 |0 100 O 15 100 39
Dynamic memory | |89 100 94 |92 95 93 |9o 100 9f | 100 © |o 100 O
Stack-related | lo 100 0 |60 70 65 |15 85 36 | 100 0 |o 100 o
Numerical | |48 100 69 |55 99 74 |41 100 64 |12 1¢ 33
Resource management | |61 100 78 |2o 90 42 |55 100 74 |6 1(What you g
Pointer-related | |52 96 71 |69 93 8o |69 100 83 |9 1(getforfree 36
Concurrency | |7o 77 73 |o 100 © |o 100 © |o 100 [U U 0
Inappropriate code | |46 99 67 |1 97 10 |28 94 51 |2 100 1| |o e
Miscellaneous 69 100 83 |83 100 91 |69 100 83 |11 100 34\ [11 20\ 34
AVERAGE (Unweighted) 59 |97 53 |94 52 |98 ii| 4 |100 20 V|6 [100 24
AVERAGE (Weighted) 68 |98 |‘ 53 |95 62 |99 5 100 (22 |7 |100 26

DR: Percent of programs with defects where defects are reported
FPR: Percent of programs without defects, with defects incorrectly reported; FPR = 100 - FPR
PM: Productivity metric: VDRx(100—FPR)

RV-Match on Toyota ITC Benchmark

- Comparison with Static Analysis Tools -

We do not have semantics for “inappropriate code” yet
We miss defects because inherent limited code coverage of RV
No false positives for RV-Match!

Shiraishi et al., RV-Match | GrammaTech| MathWorks MathWorks GCC Clang
ISSRE a5 CodeSonar | Code Prover Bug Finder

DR FPR PM [DR FPR PM |DR FPR PM |DR FPR PM (DR FPR PM |DR FPR PM
Static memory 100 100 100 [100 100 100 (97 100 98 |97 2100 98 |0 100 15 100 39
Dynamic memory |94 100 97 |89 100 94 |92 95 93 |9o 100 95 |o 100 |o 100 O
Stack-related |1oo 100 1oo|o 100 ©O |6o 70 65 |15 85 36 |o 100 O |o 100 O
Numerical |96 100 98 |48 100 69 |55 99 74 |41 100 64 |12 100 35 |11 100 33
Resource management |93 100 96 |61 100 78 |2o 90 42 |55 100 74 |6 100 2§ |3 100 18
Pointer-related |98 100 99 |52 96 71 |69 93 8o |69 100 83 |9 100 30 |13 100 36
Concurrency |67 100 82 |7o 77 73 |o 100 © |o 100 © |o 100 © |o 100 O
Inappropriate code |o 100 © |46 99 67 |1 97 10 |28 94 51 |2 100 13 |o 100 O
Miscellaneous 63 100 79 |69 100 83 |83 100 91 (69 1200 83 |11 100 34 |11 100 34

20 |6 |100 24
22 |7 |100 26

AVERAGE (Unweighted) |79 (100 89 |59 |97 |76 [53 |94 |71 |52 |98 |71
AVERAGE (Weighted) |82 10091 |68 98 |82 53 |95 72 [62 99 |78

DR: Percent of programs with defects where defects are reported
FPR: Percent of programs without defects, with defects incorrectly reported; FPR = 100 - FPR

PM: Productivity metric: VDRx(100—FPR)

oS
[
o
(@)

U
R
o
o

RV-Match on Toyota ITC Benchmark

- Comparison with Other Analysis Tools -

We have also evaluated other free analysis tools on the Toyota ITC benchmark
Numbers for other tools may be slightly off; they were not manually checked yet
Clang cannot be run with UBSan, ASan and TSan together; we ran them separately

Shiraishi et al., RV-Match Valgrind + UBSan +TSan + Frama-C (Value | Compcert
ISSRE 15 Helgrind (GCC) | MSan + ASan (Clang) | Analysis Plugin) | Interpreter

DR FPR PM |DR FPR PM |DR FPR PM DR FPR PM DR FPR PM
Static memory 100 100 100 |9 100 30 (79 100 89 82 96 89 97 82 8¢
Dynamic memory |94 100 97 |80 95 87 |16 95 39 |79 27 46 |29 8o 48
Stack-related |1oo 100 100 |7o 80 75 |95 75 84 |45 65 54 |35 70 49
Numerical |96 100 98 |22 100 47 |59 100 77 |79 47 61 |48 79 62
Resource management |93 100 96 |57 100 76 |47 96 67 |63 46 54 |32 83 52
Pointer-related |98 100 99 |6o 100 77 |58 97 75 |81 4O 57 |87 73 8o
Concurrency |67 100 82 |72 79 76 |67 72 70 |7 100 26 |58 42 49
Inappropriate code |o 100 O |2 100 13 |o 100 O |33 63 45 |17 83 38
Miscellaneous 63 100 79 |29 100 53 (37 100 61 |83 49 63 63 71 67
AVERAGE (Unweighted) |79 /200 89 (44 |95 |65 |51 93 69 61 |59 |60 52 |74 |62
AVERAGE (Weighted) 82 100|91 42 |97 |65 |47 95 |67 |66 55 |60 |51)76 |63

DR: Percent of programs with defects where defects are reported
FPR: Percent of programs without defects, with defects incorrectly reported; FPR = 100 - FPR

PM: Productivity metric: VDRx(100—FPR)

e JADS TACAS 2016

Compétitidn on Software Verification (SV-COMP)

~ RV-Match on SV-Comp

We had a tutorial at ETAPS'16 Congress. We heard
colleagues at ETAPS'16 complaining that some of the
correct SV-Comp benchmark programs are undefined
= SV-Comp = benchmark for evaluating C program verifiers

= Annual competition of program verification
So we run the correct SV-Comp programs with kcc

Unexpected results

= Out of 1346 “correct programs”, 188 (14%) were undefined,
that is, wrong! So most program verifiers these days prove
wrong programs correct. Think about it ...

34

RV-Match Error Reports

Error

UB-CB1

UB-CB2

UB-CB3

UB-CB4

UB-CCV1

UB-C

UB-CCV4

UB-CCV5

UB-CC

UB-C

UB-CCV11

The C11 semantic errors follow the template: Error_

pe-Error_C

The Error_Type can be one of: UB (Undefined Behavior), USP (Unspecified Behavior),

The Error_C

2 |S @ unique d to identify a particular error.

Description
Types of function call arguments aren't compatible with declared types after promotions.
Function call has fewer arguments than parameters in function definition.

Function call has more arguments than parameters in function definition.

Function defined with no parameters called with arguments.

Signed integer overflow.

Conversion to integer from float outside the range that can be represented.

Floating-point value outside the range

Casting empty value to type other than void.
Casting void type to non-void type.
Conversion from pointer to integer of a value possibly unrepresentable in the integer type.

Conversion to a pointer type with a stricter alignment requirement (possibly undefined).

fvalues that can be represented after conversion.

' (Constraint Violation)

~200 different error reports

,or IMPL (Implementation Speci

¢ Behay

Predicting Concurrency Errors from Correct Executions without false alarms

RV-Predict

RV-Predict Overview

Tomcat (O UtDUtBUﬁe r.java) Automatically detect the rarest and most

difficult data races in your Java/C code, saving
blic void clear) on development effort with the most precise
encoders. ; | : race finder available. RV-Predict gives you:
* anautomatic debugger for subtle Java/C
data races with no false positives

m

ncoders

Pt“ * seamless integration with unit tests, build
conv = (C2BConverter) encoders.get(enc); infrastructure, and continuous integration
Conventional testing « amaximal detection algorithm that finds

approaches do not more races than any sound dynamic tool

__________________ detect the data-race I

Results : RV-Predict precisely detects
Tests run: 0, Failures: 0, Errors: 0, Skipped: the data-race and reportS the
1
relevant stack-traces
Data race on field java.util.HashMap.S$state:

{{{ Concurrent write in thread T83 (locks held: {Monitor@67298f15})
--—--> at org.apache.catalina.connector.OutputBuffer.clearkEncoders (OutputBuffer.java:255)

Concurrent read in thread T61l (locks held: {})
-—-—-> at org.apache.catalina.connector.OutputBuffer.setConverter (OutputBuffer.java:604) ...

Simple C Data Race Example

#include <thread>

0t var = 05 /) shared What value does it return?
void threadl() { Data race on shared var
o This one is easy to spot, but
void thread2 () | data races can be evil
o Non-deterministic
int main () { Qare

thread 12 (thread2) | Hard to reproduce

t1.90in0) ; Led to catastrophic failures

t2.j0in() ;

Human life (Therac 25,
} return var; Northeastern blackout, ...)

Expected Execution

Code Event Trace
#include <thread> main threadl thread?2
»int var = 0; // shared 1. write (var,0)
void threadl() { 2. fork(threadl)
var++: 3. fork(thread?)
} 4. read(var,0)
5. write(var,1)
void thread2 () { 6. read(var,1)
var++; 7. write (var, ?2)
}
int main() { :g jlo:.Ln(tEreajé)
thread t1(threadl) ; - Join(threadz)

thread t2 (thread?2?) ;

tl.join() ;

t2.join() ;
» return var;
}

»return (2)

UnExpected Execution (Rare)

Code Event Trace
#include <thread> main threadl thread?2
»int var = 0; // shared 1. write (var,0)
void threadl() { 2. fork(threadl)
var++: 3. fork(thread?)
} »4. read (var, 0)
»5 read (var, 0)

void thread2() { W)6. write(var,1)

W) var++; 7. write(var,1)
}
. . 8. join(threadl)

t
tnd main{) A :9. join (thread?2)

thread tl(threadl);
thread t2 (thread?2?) ;

tl.join() ;
t2.join() ;

» return var;

}

»return (1)

RV-Predict Approach

Instrument program to emit event trace when executed
Give every observed event an order variable

Encode event causal ordering and data race as constraints
Solve constraints with SMT solver

s @ satisfiable?

Code Event Trace
(we use Z3 solver)

//;chLude <thread>

int var = 0; // shared @ If “yesu then data Face
void threadl() { cC.
} var++; //
(04 (D)
void thread2() { N
;o Model =
int main() { g
thread t2(thread2) ; Causal dependence as <

tl.j0in();
t2.j0in () ;

mathematical formula
o Y, @

Predicting Data Races

Code Assume Expected Execution Trace
#include <thread> main threadl thread2
int var = 0; // shared ll. write (var,0) Causal
, 2. fork(threadl) dependence
hread1 :
void threadl() f (e fork(thread2)\\\ Potential

l read (var, 0) data race
5. write(var, 1}\\
<J6. read (var, 1)

7. write (var, ?2)

If ¢ satishable then

dataraceis possible . jOln(threadl)‘//
(no false alarm) bo! join (thread?)

return (2)

tl.join() ;
£2.30in(); Encode causal dependence and data race as constraints:

return var;

) (P = 01<02<03<08<09 /\ 04<05 /\ 06<07

/\ 02<04 /\ 03<06 /\ 05<08 /\ 07<09
/\ 04=07 // only one out of 3 races

RV-Predict Features

Program
’ve,{f‘;g;'t’igﬁ behaviors
predict
Provably correct and
maximal space of
causally equivalent paths
predicted from one path

Also synchronization, interrupts; see demo

No false alarms: all predicted races are real
Maximal: Impossible to precisely (without false
alarms) predict more races than RV-Predict does
from the same execution trace

RV-Predict DEMO

Go to https://runtimeverification.com/predict
to download RV-Predict (currently only Java 8
version available); javac and then execute the
Java programs under folder examples

Most of the examples above are also discussed,

with detailed comments, at
https://runtimeverification.com/predict/docs/runningexamples
https://runtimeverification.com/blog/?p=58

Monitor Safety Requirements and Recover when Violations Detected

RV-Monitor

RV-Monitor for C

RV-Monitor is a code generator
Takes safety property specifications as input

Generates efficient monitoring code library as output
Provably correct: proof certificate can also be generated

Specifications can be implicit (generic API

protocols) or explicit (application-specific)

RV-Monitor specifications consist of
Events: snapshots of system execution
Properties: desired sequences of events
Recovery: what to do when property violated

RV-Monitor Example B

Informal requirements

V d: always implies
not |l sck since UnLock)
@\linla*' n : Close(d)

Safe door lock
Doors should always
open only if they were Formali-

eqg' re Event
unlockedin the pasta~~ " = per Automatically
not locked since then, P--—- - folrl?gailc';’ms" generated
violation, close door. Recovery Monitor for each d

...(hundreds of these)

// One such monitor instance
// in for each door d

State: one bit, b

b = Unlock || 'Lock && b

correct then send(Close)

RV-Monitor Applications

CANIF_CS_UNINIT

PowsrOft ant CortrlerBusOH Cort
I\v‘v Contr > CanNet ? ork

‘£
GANIF_GS_INIT

CANIF_CS_STARTED j
Can ontmlleode(i
css
ehlode(" ‘ leloc,
¢

RV-AUTOSAR
Monitor AUTOSAR compliance

Canlf_SetContolle
Cantrolle: CAMF CS S CPPE))
/Can, S(Co erMo

Cantolle: CAA STOF

Formalized 20+ CAN interface properties | , “7" -

+ oniry/ cancel panding tranamit requo @
ry / cicar Canlf tranamit buffors

CANIF_CS_START_TO_SLEEP

RV E C U 'ﬁ(_jl L %fm oo
ECU in charge of safety on CAN bus *
Runs LLVM

All code generated automatically from
safety specifications; provably correct

Built prototype using STM ECU board
STM3210C-EVAL

Currently runs in an actual car (model omitted)

Canlf_SetCon:
Control e CA\(IF ,.S TOP ED

Can_S
Controller, CI-N T HWEUP

RV-ECU DEMO

Go to
https://runtimeverification.com/ecu and
watch video

Conclusion '

Runtime Verification, Inc., is a new startup
company licensed by the University of lllinois
Offers solutions for reliable and safe software

Technology based on runtime verification
Scalable, rigorous, automatic, no false alarms
Can also be done exhaustively: full verification

Business model
General-purpose libraries and tools
Custom tools and services to select customers

