
Grigore	Rosu	
Founder,	President	and	CEO	
Professor	of	Computer	Science,	University	of	Illinois	

https://runtimeverification.com

¡  Runtime	Verification	
§  Company	
▪  Licensed	by	University	of	Illinois	at	Urbana-Champaign	

§  Scientific	Field	
▪  Co-pioneered	with	NASA	colleagues	and	collaborators	

¡  Products	and	Demos	
§  RV-Match	
§  RV-Predict	
§  RV-Monitor	

¡  Conclusion	

The	Company	

Runtime	Verification,	Inc.	(RV):	startup	
company	aimed	at	bringing	the	best	ideas	and	
technology	developed	by	the	runtime	verification	
community	to	the	real	world	as	mature	and		
competitive	products;	licensed	by	the	University	
of	Illinois	at	Urbana-Champaign	(UIUC),	USA.	
	
Mission:	To	offer	the	best	possible	solutions	for	
reliable	software	development	and	analysis.		
	

Ranked	top	5	in	USA	(US	News)	
#1	in	USA	in	Soft.	Eng.	(csrankings.org)	
RV	technology	is	licensed	by	UIUC	
RV	employees	are	former	UIUC	students	

¡  Runtime	verification	is	a	new	field	aimed	at	
verifying	computing	systems	as	they	execute	
§  Good	scalability,	rigorous,	no	false	alarms	

¡ We	helped	shape	the	field	
§  Co-Founded	the	Runtime	Verification	conference	
§  >100	RV	publications	
§  Raised	$7M+	funding	to	develop	technology	

The	Field	

¡  Subfield	of	program	analysis	and	verification	
§  So	is	static	analysis	(SA)	
§  SA	and	RV	complement	each	other		

¡  Main	idea	of	RV	is	different	from	that	of	SA:	
§  Execute	program	to	analyze	
▪  Using	instrumentation	or	in	a	special	runtime	environment	

§  Observe	execution	trace	
§  Build	model	from	execution	trace	
§  Analyze	model	
Steps	above	may	be	combined	(e.g.,	online	analysis)	

Code	 Model	

Extract	 Analyze	
Bug	1	
Bug2	
…	

Advantages:	
+	good	code	coverage	
+	early	in	development	
+	mature	field	

Limitations:	
-	undecidable	problem,	so	
-	false	positives/negatives	or		
-	does	not	scale	

Code	

Model	

Analyze	
Bug	1	
Bug2	
…	

Advantages:	
+	precise	(no	false	alarms)	
+	good	scalability	and	rigor	
+	recovery	possible	

Limitations:	
-	code	must	be	executable	
-	less	code	coverage	

Ex
ec

ut
e	

Event	Trace	 Highly	customized	
for	property	of	

interest	

Highly	customized	
for	property	of	

interest	

¡  Code	must	be	executable	
§  Use	complementary,	static	analysis,	earlier	in	process	
§  Use	symbolic	execution	(RV-Match)	

¡  Less	code	coverage	
§  Integrate	RV	tools	with	your	existing	testing	
infrastructure:	your	unit	tests	should	already	provide	
good	code	coverage;	invoke	RV	tools	on	each	test	

§  Systematic	re-execution:	cover	new	code	each	time	
§  Symbolic	execution	covers	many	inputs	at	once	

The	Products	

RV-Monitor	is	a	runtime	monitoring	tool	that	
allows	for	checking	and	enforcement	of	safety	
properties	over	the	execution	of	your	software.	
-		Java	(prototype),	C/C++	(prototype)	

RV-Match	is	a	semantics-based	automatic	debugger	
for	common	and	subtle	C	errors,	and	an	automatic	
dynamic	checker	for	all	types	of	ISO	C11	undefinedness.	
-		C		(mature);	Java	and	JavaScript	(prototypes)	

RV-Predict	is	an	automatic	dynamic	data-race	detector	
for	Java,	which	is	sound	(no	false	positives)	and	maximal	
(no	other	sound	dynamic	tool	can	find	more	races).	
-		Java	(mature),	C/C++	with	interrupts	(prototype)	

Big	triangle:	all	
runtime	behaviors	
of	your	program	

	
	

One	path	only;	
0-100%	overhead;	
complex	properties	

	
	

Maximal	number	of	
causally	equivalent	paths	
predicted	from	one	path;	

1-102x	overhead;	
races,	atomicity,	

deadlocks		

	
	

From	one	path	to	complete	
coverage	/	verification;	any	

properties;	may	require	user	input	

Semantics-based	runtime	verification	

Code	(6-int-overflow.c)		

Conventional	
compilers	do	not	
detect	problem	 RV-Match’s	kcc	tool	precisely	

detects	and	reports	error,	and	
points	to	ISO	C11	standard	

…	
RV-Match	gives	you:	
•  an	automatic	debugger	for	subtle	bugs	

other	tools	can't	find,	with	no	false	positives	
•  seamless	integration	with	unit	tests,	build	

infrastructure,	and	continuous	integration	
•  a	platform	for	analyzing	programs,	boosting	

standards	compliance	and	assurance	

1.  Execute	program	within	precise	mathematical	model	of	ISO	C11	
2.  Build	abstract	program	state	model	during	execution	
3.  Analyze	each	event,	performing	consistency	checks	on	state	

Code	

Event	Trace	

Abstract	State	Model	

Heap	 About	120	
semantic	state	
components	

Are	all	ISO	C11	
rules	matched?		
If	“no”	then	error	

A
na

ly
ze

	

Deductive	
program	
verifier	

Parser	

Interpreter	

Compiler	

(semantic)	
Debugger	

Symbolic	
execution	

Model	
checker	

Formal	Language	Definition		
(Syntax	and	Semantics)	

C,	C++,	Java,	JavaScript,	etc.	

Test-case	
generation	

¡  To	define	programming	languages	formally,	
we	use	the	academic	K	tool	and	notation	
§  http://kframework.org	
§  Developed	in	the	Formal	Systems	Laboratory	(my	
research	group)	at	the	University	of	Illinois	

§  Open	source	

20	

21	

Syntax	declared	using	annotated	BNF		

22	

Configuration		given	as	a	nested	cell	structure.	
Leaves	can	be	sets,	multisets,	lists,	maps,	or	syntax	

23	

Semantic	rules	given	contextually	

rule
 <k> X = V => V …</k>
 <env>… X |-> (_ => V) …</env>

Several	large	languages	were	recently	defined	in	K:	
¡  Java	1.4:	by	Bogdanas	etal	[POPL’15]	

§  800+	program	test	suite	that	covers	the	semantics	
¡  JavaScript	ES5:	by	Park	etal	[PLDI’15]	

§  Passes	existing	conformance	test	suite	(2872	pgms)	
§  Found	(confirmed)	bugs	in	Chrome,	IE,	Firefox,	Safari	

¡  C11:	Ellison	etal	[POPL’12,	PLDI’15]	
§  It	defines	the	ISO	C11	standard	
§  Including	all	undefined	behaviors	

…	
24	

120	Cells!	

Heap	

…	plus	~2500	rules	…	
25	

¡  No	need	to	re-implement	tools	as	language	changes	
§  Easy	to	customize	tools	
▪  E.g.,	embedded	C	for	a	specific	micro-controller	

§  Programming	languages	continuously	evolve	(C90	→	C99	
→	C11	→	…;	or	Java	1.4	→	Java	5	→	…	→	Java	8	→	…)	

¡  Tools	are	correct	by	construction	
§  Tools	are	language-independent	and	can	produce	
correctness	certificates	based	on	language	semantics	only	

§  Language	definitions	are	open-source	and	public	
▪  Experts	worldwide	can	“validate”	them	
▪  No	developer	“interpretation”	of	language	meaning	(e.g.,	C)	

¡  Let’s	use	RV-Match	with	(extended)	C11	semantics		
¡  Goal:	catch	undefined	behavior!	

§  You	should	always	avoid	undefined	behavior	in	your	code!!!	
§  Undefined	behavior	→		lack	of	portability,	security	risks,	non-determinism	

¡  Wrapped	RV-Match[C11]	as	an	ICO	C11	compliant	drop-in	
replacement	of	C	compilers	(e.g.,	gcc),	called	kcc

¡  Example:	what	does	the	following	return?	

4	with	gcc
3	with	clang	(LLVM)	
ISO	C11:	undefined!	
kcc	reports	error	

And,	because	of	that,	your	code	tested	on	
PC	will	not	port	on	embedded	platform,	
will	crush	when	you	change	compiler,	and	
will	give	you	different	results	with	even	the	
same	compiler	but	different	options	…	

{	

¡  Go	to	https://runtimeverification.com/match	to	
download	RV-Match	(currently	only	C11	version	
available);	kcc	and	then	execute	the	C	programs	
under	examples/demo	in	the	given	order	
§ Most	of	the	examples	above	are	also	discussed,	with	
detailed	comments,	at	

https://runtimeverification.com/match/docs/runningexamples	

¡  You	can	also	run	the	Toyota	ITC	benchmark:	
https://runtimeverification.com/match/docs/benchmark		

¡  Evaluated	RV-Match	on	the	Toyota	ITC	benchmark,	aimed	at	
quantitatively	evaluating	static	analysis	tools	
§  By	Shin’ichi	Shiraishi	and	collaborators	
§  ISSRE’14	original	paper,	compared	six	tools;	paper	disappeared	(!)	
§  Press	release	by	Grammatech,	available	at	PRNewswire	:	

…	report	compares	six	
different	static	analysis	

tools	against	benchmarks	
in	eight	safety-related	
categories	of	software	
defect	types:	Static	
Memory,	Dynamic	
Memory,	Numerical,	

Resource	Management,	
Pointer-Related,	
Concurrency,	…	

Shiraishi	et	al.,		
ISSRE	’15	

RV-Match	
	

GrammaTech	
CodeSonar	

MathWorks	
Code	Prover	

MathWorks	
Bug	Finder	

GCC	 Clang	

		 		 		 DR	 FPR	 PM	 DR	 FPR	 PM	 DR	 FPR	 PM	 DR	 FPR	 PM	 DR	 FPR	 PM	

Static	memory	 		 		 		 100	 100	 100	 97	 100	 98	 97	 100	 98	 0	 100	 0	 15	 100	 39	
Dynamic	memory	 		 		 		 89	 100	 94	 92	 95	 93	 90	 100	 95	 0	 100	 0	 0	 100	 0	
Stack-related	 		 		 		 0	 100	 0	 60	 70	 65	 15	 85	 36	 0	 100	 0	 0	 100	 0	
Numerical	 		 		 		 48	 100	 69	 55	 99	 74	 41	 100	 64	 12	 100	 35	 11	 100	 33	
Resource	management	 		 		 		 61	 100	 78	 20	 90	 42	 55	 100	 74	 6	 100	 25	 3	 100	 18	
Pointer-related	 		 		 		 52	 96	 71	 69	 93	 80	 69	 100	 83	 9	 100	 30	 13	 100	 36	
Concurrency	 		 		 		 70	 77	 73	 0	 100	 0	 0	 100	 0	 0	 100	 0	 0	 100	 0	
Inappropriate	code	 		 		 		 46	 99	 67	 1	 97	 10	 28	 94	 51	 2	 100	 13	 0	 100	 0	
Miscellaneous	 		 		 		 69	 100	 83	 83	 100	 91	 69	 100	 83	 11	 100	 34	 11	 100	 34	
AVERAGE	(Unweighted)	 		 		 		 59	 97	 76	 53	 94	 71	 52	 98	 71	 4	 100	 20	 6	 100	 24	
AVERAGE	(Weighted)	 		 		 		 68	 98	 82	 53	 95	 71	 62	 99	 78	 5	 100	 22	 7	 100	 26	

DR:	Percent	of	programs	with	defects	where	defects	are	reported	
FPR:	Percent	of	programs	without	defects,	with	defects	incorrectly	reported;	FPR = 100 - FPR
PM:	Productivity	metric:	√DR×(100−FPR) 	

Shiraishi	etal	published	revised	version	in	ISSRE	2015	
1276	programs;		3	static	analysis	tools	compared	
¡  Grammatech	CodeSonar	wins	again	(numbers	below	from	ISSRE’15	paper)	

?	 What	you	
get	for	free	
What	you	
get	for	free	

¡  We	do	not	have	semantics	for	“inappropriate	code”	yet	
¡  We	miss	defects	because	inherent	limited	code	coverage	of	RV	

§  No	false	positives	for	RV-Match!	

Shiraishi	et	al.,		
ISSRE	’15	

RV-Match	 GrammaTech	
CodeSonar	

MathWorks	
Code	Prover	

MathWorks	
Bug	Finder	

GCC	 Clang	

DR	 FPR	 PM	 DR	 FPR	 PM	 DR	 FPR	 PM	 DR	 FPR	 PM	 DR	 FPR	 PM	 DR	 FPR	 PM	

Static	memory	 100	 100	 100	 100	 100	 100	 97	 100	 98	 97	 100	 98	 0	 100	 0	 15	 100	 39	
Dynamic	memory	 94	 100	 97	 89	 100	 94	 92	 95	 93	 90	 100	 95	 0	 100	 0	 0	 100	 0	
Stack-related	 100	 100	 100	 0	 100	 0	 60	 70	 65	 15	 85	 36	 0	 100	 0	 0	 100	 0	
Numerical	 96	 100	 98	 48	 100	 69	 55	 99	 74	 41	 100	 64	 12	 100	 35	 11	 100	 33	
Resource	management	 93	 100	 96	 61	 100	 78	 20	 90	 42	 55	 100	 74	 6	 100	 25	 3	 100	 18	
Pointer-related	 98	 100	 99	 52	 96	 71	 69	 93	 80	 69	 100	 83	 9	 100	 30	 13	 100	 36	
Concurrency	 67	 100	 82	 70	 77	 73	 0	 100	 0	 0	 100	 0	 0	 100	 0	 0	 100	 0	
Inappropriate	code	 0	 100	 0	 46	 99	 67	 1	 97	 10	 28	 94	 51	 2	 100	 13	 0	 100	 0	
Miscellaneous	 63	 100	 79	 69	 100	 83	 83	 100	 91	 69	 100	 83	 11	 100	 34	 11	 100	 34	
AVERAGE	(Unweighted)	 79	 100	 89	 59	 97	 76	 53	 94	 71	 52	 98	 71	 4	 100	 20	 6	 100	 24	
AVERAGE	(Weighted)	 82	 100	 91	 68	 98	 82	 53	 95	 71	 62	 99	 78	 5	 100	 22	 7	 100	 26	

DR:	Percent	of	programs	with	defects	where	defects	are	reported	
FPR:	Percent	of	programs	without	defects,	with	defects	incorrectly	reported;	FPR = 100 - FPR
PM:	Productivity	metric:	√DR×(100−FPR) 	

¡  We	have	also	evaluated	other	free	analysis	tools	on	the	Toyota	ITC	benchmark	
¡  Numbers	for	other	tools	may	be	slightly	off;	they	were	not	manually	checked	yet	
¡  Clang	cannot	be	run	with	UBSan,	ASan	and	TSan	together;	we	ran	them	separately	
Shiraishi	et	al.,		
ISSRE	’15	

RV-Match	 Valgrind	+	
Helgrind	(GCC)	

UBSan	+	TSan	+	
MSan	+	ASan	(Clang)	

Frama-C	(Value	
Analysis	Plugin)		

Compcert	
Interpreter		

DR	 FPR	 PM	 DR	 FPR	 PM	 DR	 FPR	 PM	 DR	 FPR	 PM	 DR	 FPR	 PM	

Static	memory	 100	 100	 100	 9	 100	 30	 79	 100	 89	 82	 96	 89	 97	 82	 89	
Dynamic	memory	 94	 100	 97	 80	 95	 87	 16	 95	 39	 79	 27	 46	 29	 80	 48	
Stack-related	 100	 100	 100	 70	 80	 75	 95	 75	 84	 45	 65	 54	 35	 70	 49	
Numerical	 96	 100	 98	 22	 100	 47	 59	 100	 77	 79	 47	 61	 48	 79	 62	
Resource	management	 93	 100	 96	 57	 100	 76	 47	 96	 67	 63	 46	 54	 32	 83	 52	
Pointer-related	 98	 100	 99	 60	 100	 77	 58	 97	 75	 81	 40	 57	 87	 73	 80	
Concurrency	 67	 100	 82	 72	 79	 76	 67	 72	 70	 7	 100	 26	 58	 42	 49	
Inappropriate	code	 0	 100	 0	 2	 100	 13	 0	 100	 0	 33	 63	 45	 17	 83	 38	
Miscellaneous	 63	 100	 79	 29	 100	 53	 37	 100	 61	 83	 49	 63	 63	 71	 67	
AVERAGE	(Unweighted)	 79	 100	 89	 44	 95	 65	 51	 93	 69	 61	 59	 60	 52	 74	 62	
AVERAGE	(Weighted)	 82	 100	 91	 42	 97	 65	 47	 95	 67	 66	 55	 60	 51	 76	 63	

DR:	Percent	of	programs	with	defects	where	defects	are	reported	
FPR:	Percent	of	programs	without	defects,	with	defects	incorrectly	reported;	FPR = 100 - FPR
PM:	Productivity	metric:	√DR×(100−FPR) 	

¡  We	had	a	tutorial	at	ETAPS’16	Congress.		We	heard	
colleagues	at	ETAPS’16	complaining	that	some	of	the	
correct	SV-Comp	benchmark	programs	are	undefined	
§  SV-Comp	=	benchmark	for	evaluating	C	program	verifiers	
§  Annual	competition	of	program	verification	

¡  So	we	run	the	correct	SV-Comp	programs	with	kcc	
¡  Unexpected	results	

§  Out	of	1346	“correct	programs”,	188	(14%)	were	undefined,	
that	is,	wrong!		So	most	program	verifiers	these	days	prove	
wrong	programs	correct.	Think	about	it	…	

34	

…	
~200	different	error	reports	

Predicting	Concurrency	Errors	from	Correct	Executions	without	false	alarms	

 T E S T S

Results :
Tests run: 0, Failures: 0, Errors: 0, Skipped: 0
...
...

Tomcat	(OutputBuffer.java)		
…	

Automatically	detect	the	rarest	and	most	
difficult	data	races	in	your	Java/C	code,	saving	
on	development	effort	with	the	most	precise	
race	finder	available.		RV-Predict	gives	you:	
•  an	automatic	debugger	for	subtle	Java/C	

data	races	with	no	false	positives		
•  seamless	integration	with	unit	tests,	build	

infrastructure,	and	continuous	integration		
•  a	maximal	detection	algorithm	that	finds	

more	races	than	any	sound	dynamic	tool	

Data race on field java.util.HashMap.$state:
{{{ Concurrent write in thread T83 (locks held: {Monitor@67298f15})
 ----> at org.apache.catalina.connector.OutputBuffer.clearEncoders(OutputBuffer.java:255)
...
Concurrent read in thread T61 (locks held: {})
 ----> at org.apache.catalina.connector.OutputBuffer.setConverter(OutputBuffer.java:604)	...

Conventional	testing	
approaches	do	not	
detect	the	data-race	

RV-Predict	precisely	detects	
the	data-race,	and	reports	the	
relevant	stack-traces	

…	

…	

…	

¡ What	value	does	it	return?	
¡  Data	race	on	shared	var
¡  This	one	is	easy	to	spot,	but	
data	races	can	be	evil	
§  Non-deterministic	
§  Rare	
§  Hard	to	reproduce	

¡  Led	to	catastrophic	failures	
§  Human	life	(Therac	25,	
Northeastern	blackout,	…)		

main

1. write(var,0)
2. fork(thread1)
3. fork(thread2)

8. join(thread1)
9. join(thread2)

return(2)

thread1

4. read(var,0)
5. write(var,1)

thread2

6. read(var,1)
7. write(var,2)

Code																					 Event	Trace																																																								

main

1. write(var,0)
2. fork(thread1)
3. fork(thread2)

8. join(thread1)
9. join(thread2)

return(1)

thread1

4. read(var,0)

6. write(var,1)

thread2

5. read(var,0)

7. write(var,1)

Code																					 Event	Trace																																																								

1.  Instrument	program	to	emit	event	trace	when	executed	
2.  Give	every	observed	event	an	order	variable	
3.  Encode	event	causal	ordering	and	data	race	as	constraints	
4.  Solve	constraints	with	SMT	solver	

Code	 Event	Trace	

Model	

Causal	dependence	as	

mathematical	formula	ϕ	

A
na

ly
ze

	

Is	ϕ	satisfiable?	
(we	use	Z3	solver)	
If	“yes”	then	data	race			

Code																					
main

1. write(var,0)
2. fork(thread1)
3. fork(thread2)

8. join(thread1)
9. join(thread2)

return(2)

thread1

4. read(var,0)
5. write(var,1)

thread2

6. read(var,1)
7. write(var,2)

Assume	Expected	Execution	Trace											

Encode	causal	dependence	and	data	race	as	constraints:	

Causal	
dependence	

Potential
data	race	

ϕ		=		O1<O2<O3<O8<O9 /\ O4<O5 /\ O6<O7
 /\ O2<O4 /\ O3<O6 /\ O5<O8 /\ O7<O9
 /\ O4=O7 // only one out of 3 races

If	ϕ	satisfiable	then	
data	race	is	possible	

(no	false	alarm)	

Program	
behaviors		

	
Provably	correct	and	
maximal	space	of	

causally	equivalent	paths	
predicted	from	one	path	

¡  Also	synchronization,	interrupts;	see	demo	
¡  No	false	alarms:	all	predicted	races	are	real	
¡  Maximal:	Impossible	to	precisely	(without	false	
alarms)	predict	more	races	than	RV-Predict	does	
from	the	same	execution	trace	

[PLDI’14]	
[RV’12]	

¡  Go	to	https://runtimeverification.com/predict		
to	download	RV-Predict	(currently	only	Java	8	
version	available);	javac	and	then	execute	the	
Java	programs	under	folder	examples
§ Most	of	the	examples	above	are	also	discussed,	
with	detailed	comments,	at	

https://runtimeverification.com/predict/docs/runningexamples	
https://runtimeverification.com/blog/?p=58	

	

Monitor	Safety	Requirements	and	Recover	when	Violations	Detected		

¡  RV-Monitor	is	a	code	generator	
§  Takes	safety	property	specifications	as	input	
§  Generates	efficient	monitoring	code	library	as	output	
▪  Provably	correct:	proof	certificate	can	also	be	generated	

¡  Specifications	can	be	implicit	(generic	API	
protocols)	or	explicit	(application-specific)	

¡  RV-Monitor	specifications	consist	of	
§  Events:	snapshots	of	system	execution	
§  Properties:	desired	sequences	of	events	
§  Recovery:	what	to	do	when	property	violated	

Safe	door	lock	
Doors	should	always	
open	only	if	they	were	
unlocked	in	the	past	and	
not	locked	since	then;	at	
violation,	close	door.	
…(hundreds	of	these)	

Informal	requirements	

Formalize	requirements	
(by	domain	experts,	
using	various	formalisms;	
here	an	interval	logic)	

∀	d	:	always	(Open(d)	implies	
												not	Lock	since	UnLock)	
@violation	:	Close(d)	

Formal	requirements	

// One such monitor instance
// in for each door d

State: one bit, b

b = UnLock || !Lock && b
if (Open && !b)
then send(Close)

Monitor	for	each	d	

Automatically	
generated	

Provably	
correct	

Event	

Property	
Recovery	

¡  RV-AUTOSAR	
§  Monitor	AUTOSAR	compliance	
§  Formalized	20+	CAN	interface	properties	

¡  RV-ECU	
§  ECU	in	charge	of	safety	on	CAN	bus	
§  Runs	LLVM	
§  All	code	generated	automatically	from	
safety	specifications;	provably	correct	

§  Built	prototype	using	STM	ECU	board	
STM3210C-EVAL	
▪  Currently	runs	in	an	actual	car	(model	omitted)	

¡  Go	to	
https://runtimeverification.com/ecu	and	
watch	video	

¡  Runtime	Verification,	Inc.,	is	a	new	startup	
company	licensed	by	the	University	of	Illinois	

¡  Offers	solutions	for	reliable	and	safe	software	
¡  Technology	based	on	runtime	verification	

§  Scalable,	rigorous,	automatic,	no	false	alarms	
§  Can	also	be	done	exhaustively:	full	verification	

¡  Business	model	
§  General-purpose	libraries	and	tools	
§  Custom	tools	and	services	to	select	customers	

