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Frama-C Overview

Frama-C Historical Context

I 90’s: CAVEAT, Hoare logic-based tool for C code at CEA

I 2000’s: CAVEAT used by Airbus during certification process of the
A380 (DO-178 level A qualification)

I 2002: Why and its C front-end Caduceus (at INRIA)

I 2004: start of Frama-C project as a successor to CAVEAT and
Caduceus

I 2008: First public release of Frama-C (Hydrogen)

I 2012: WP: Weakest-precondition based plugin

I 2012: E-ACSL: Runtime Verification plugin

I 2013: CEA Spin-off TrustInSoft

I 2016: Eva: Evolved Value Analysis

I 2016: Frama-Clang: C++ extension

I Today: Frama-C Aluminium (v.13)

I Upcoming: Frama-C Silicium (v.14, expected in November)
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Frama-C Overview

Frama-C Open Source Distribution

Framework for analyses of source code written in ISO 99 C
[Kirchner & al @FAC’15]

I analyze C++ code extended with ACSL annotations

I ACSL
I ISO/ANSI C Specification Language
I langua franca of analyzers

I almost open source (LGPL 2.1)

http://frama-c.com

I also proprietary extensions and distributions

I targets both academic and industrial usage
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Frama-C Overview

Example: a C program annotated in ACSL

/∗@ r e q u i r e s n>=0 && \ v a l i d ( t + ( 0 . . n−1)) ;
a s s i g n s \noth ing ;
e n s u r e s \ r e s u l t != 0 <==>

( \ f o r a l l i n t e g e r j ; 0 <= j < n ==> t [ j ] == 0 ) ;
∗/
i n t a l l z e r o s ( i n t t [ ] , i n t n ) {

i n t k ;
/∗@ l oop i n v a r i a n t 0 <= k <= n ;

l oop i n v a r i a n t \ f o r a l l i n t e g e r j ; 0<=j<k ==> t [ j ]==0;
l oop a s s i g n s k ;
l oop v a r i a n t n−k ;

∗/
f o r ( k = 0 ; k < n ; k++)

i f ( t [ k ] != 0)
r e t u r n 0 ;

r e t u r n 1 ;
}

Can be proven
with Frama-C/WP
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Frama-C Overview

Frama-C, a Collection of Tools

Several tools inside a single platform

I plug-in architecture à la Eclipse [S. @F-IDE’15]

I tools provided as plug-ins

I 21 plug-ins in the open source distribution

I outside open source plug-ins (E-ACSL & Frama-Clang, a few others)

I close source plug-ins, either at CEA (about 20) or outside

I plug-ins connected to a kernel

I provides an uniform setting

I provides general services

I synthesizes useful information
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Frama-C Overview

Plug-in Gallery
presented in this talk

some words in this talk

Plug-ins
Dynamic Analysis

PathCrawler

E-ACSL

StaDy

Sante
Ltest

Specification Generation

RTE
Aoräı

Formal Methods

Deductive Verification

WpJessie

Abstract Interpretation

Value / Eva

Code Transformation

Semantic constant folding

Clang

Sparecode

Slicing

Browsing of unfamiliar code

Callgraph

Scope & Data-flow browsing

Occurrence
Impact

Metrics
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Frama-C Overview

Frama-C, a Development Platform

I developed in OCaml (≈ 180 kloc in the open source distribution,
≈ 300 kloc with proprietary extensions)

I was based on Cil [Necula & al @CC’02]

I library dedicated to analysis of C code

development of plug-ins by third party

I powerful low-cost analyser

I dedicated plug-in for specific task (verifying your coding rules)

I dedicated plug-in for fine-grain parameterization

I extension of existing analysers
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Formal Specification and Deductive Verification with WP

Goal

In this part, we will see

I how to specify a C program using ACSL

I how to prove it with an automatic tool using Frama-C/WP

I how to understand and fix proof failures
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Formal Specification and Deductive Verification with WP

Objectives of Deductive Verification

Rigorous, mathematical proof of semantic properties of a program

I functional properties
I safety:

I all memory accesses are valid,
I no arithmetic overflow,
I no division by zero, . . .

I termination
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Formal Specification and Deductive Verification with WP Overview of ACSL and WP

ACSL: ANSI/ISO C Specification Language
Presentation

I Based on the notion of contract, like in Eiffel, JML

I Allows users to specify functional properties of programs

I Allows communication between various plugins

I Independent from a particular analysis

I Manual at http://frama-c.com/acsl

Basic Components

I Typed first-order logic

I Pure C expressions

I C types + Z (integer) and R (real)

I Built-ins predicates and logic functions, particularly over pointers:
\valid(p), \valid(p+0..2), \separated(p+0..2,q+0..5),

\block_length(p)
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Formal Specification and Deductive Verification with WP Overview of ACSL and WP

WP plugin

I Hoare-logic based plugin, developed at CEA List

I Proof of semantic properties of the program

I Modular verification (function by function)

I Input: a program and its specification in ACSL

I WP generates verification conditions (VCs)
I Relies on Automatic Theorem Provers to discharge the VCs

I Alt-Ergo, Simplify, Z3, Yices, CVC3, CVC4 . . .

I WP manual at http://frama-c.com/wp.html
I If all VCs are proved, the program respects the given specification

I Does it mean that the program is correct?

I NO! If the specification is wrong, the program can be wrong!
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Formal Specification and Deductive Verification with WP Function contracts
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Formal Specification and Deductive Verification with WP Function contracts

Contracts

I Goal: specification of imperative functions
I Approach: give assertions (i.e. properties) about the functions

I Precondition is supposed to be true on entry (ensured by the caller)
I Postcondition must be true on exit (ensured by the function)

I Nothing is guaranteed when the precondition is not satisfied

I Termination may be guaranteed or not (total or partial correctness)

Primary role of contracts

I Must reflect the informal specification

I Should not be modified just to suit the verification tasks
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Formal Specification and Deductive Verification with WP Function contracts

Example 1

Specify and prove the following program:

// returns the absolute value of x

int abs ( int x ) {

if ( x >=0 )

return x ;

return -x ;

}

Try to prove with Frama-C/WP using the basic command

I frama-c-gui -wp file.c
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Formal Specification and Deductive Verification with WP Function contracts

Example 1 (Continued)

The basic proof succeeds for the following program:

/*@ ensures (x >= 0 ==> \result == x) &&

(x < 0 ==> \result == -x);

*/

int abs ( int x ) {

if ( x >=0 )

return x ;

return -x ;

}

I The returned value is not always as expected.

I For x=INT_MIN, -x cannot be represented by an int and overflows

I Example: on 32-bit, INT_MIN= −231 while INT_MAX= 231 − 1
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Formal Specification and Deductive Verification with WP Function contracts

Safety warnings: arithmetic overflows

Absence of arithmetic overflows can be important to check

I A sad example: crash of Ariane 5 in 1996

WP can automatically check the absence of runtime errors

I Use the command frama-c-gui -wp -wp-rte file.c

I It generates VCs to ensure that runtime errors do not occur
I in particular, arithmetic operations do not overflow

I If not proved, an error may occur.

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 20 / 107



Formal Specification and Deductive Verification with WP Function contracts

Example 1 (Continued) - Solution

This is the completely specified program:

#include <limits.h>

/*@ requires x > INT_MIN;

ensures (x >= 0 ==> \result == x) &&

(x < 0 ==> \result == -x);

assigns \nothing;

*/

int abs ( int x ) {

if ( x >0 )

return x ;

return -x ;

}
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Formal Specification and Deductive Verification with WP Function contracts

Example 2

Specify and prove the following program:

// returns the maximum of x and y

int max ( int x, int y ) {

if ( x >=y )

return x ;

return y ;

}
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Formal Specification and Deductive Verification with WP Function contracts

Example 2 (Continued) - Find the error

The following program is proved. Do you see any error?

/*@ ensures \result >= x && \result >= y;

*/

int max ( int x, int y ) {

if ( x >=y )

return x ;

return y ;

}
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Formal Specification and Deductive Verification with WP Function contracts

Example 2 (Continued) - a wrong version

This is a wrong implementation that is also proved. Why?

#include <limits.h>

/*@ ensures \result >= x && \result >= y;

*/

int max ( int x, int y ) {

return INT_MAX ;

}

I Our specification is incomplete

I Should say that the returned value is one of the arguments
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Formal Specification and Deductive Verification with WP Function contracts

Example 2 (Continued) - Solution

This is the completely specified program:

/*@ ensures \result >= x && \result >= y;

ensures \result == x || \result == y;

assigns \nothing;

*/

int max ( int x, int y ) {

if ( x >=y )

return x ;

return y ;

}
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Formal Specification and Deductive Verification with WP Function contracts

Example 3

Specify and prove the following program:

// returns the maximum of *p and *q

int max_ptr ( int *p, int *q ) {

if ( *p >= *q )

return *p ;

return *q ;

}
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Formal Specification and Deductive Verification with WP Function contracts

Example 3 (Continued) - Explain the proof failure

Explain the proof failure with the option -wp-rte for the program:

/*@ ensures \result >= *p && \result >= *q;

ensures \result == *p || \result == *q;

*/

int max_ptr ( int *p, int *q ) {

if ( *p >= *q )

return *p ;

return *q ;

}

I Nothing ensures that pointers p, q are valid

I It must be ensured either by the function, or by its precondition
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Formal Specification and Deductive Verification with WP Function contracts
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Formal Specification and Deductive Verification with WP Function contracts

Safety warnings: invalid memory accesses

An invalid pointer or array access may result in a segmentation fault or
memory corruption.

I WP can automatically generate VCs to check memory access validity
I use the command frama-c-gui -wp -wp-rte file.c

I They ensure that each pointer (array) access has a valid offset (index)
I If the function assumes that an input pointer is valid, it must be

stated in its precondition, e.g.
I \valid(p) for one pointer p
I \valid(p+0..2) for a range of offsets p, p+1, p+2
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Formal Specification and Deductive Verification with WP Function contracts

Example 3 (Continued) - Find the error

The following program is proved. Do you see any error?

/*@ requires \valid(p) && \valid(q);

ensures \result >= *p && \result >= *q;

ensures \result == *p || \result == *q;

*/

int max_ptr ( int *p, int *q ) {

if ( *p >= *q )

return *p ;

return *q ;

}

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 29 / 107



Formal Specification and Deductive Verification with WP Function contracts

Example 3 (Continued) - a wrong version

This is a wrong implementation that is also proved. Why?

/*@ requires \valid(p) && \valid(q);

ensures \result >= *p && \result >= *q;

ensures \result == *p || \result == *q;

*/

int max_ptr ( int *p, int *q ) {

*p = 0;

*q = 0;

return 0 ;

}

I Our specification is incomplete

I Should say that the function cannot modify *p and *q
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Formal Specification and Deductive Verification with WP Function contracts

Assigns clause

The clause assigns v1, v2, ... , vN;

I Part of the postcondition

I Specifies which (non local) variables can be modified by the function

I Avoids to state for all unchanged global variables v:
ensures \old(v) == v;

I Avoids to forget one of them: explicit permission is required

I If nothing can be modified, specify assigns \nothing
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Formal Specification and Deductive Verification with WP Function contracts

Example 3 (Continued) - Solution

This is the completely specified program:

/*@ requires \valid(p) && \valid(q);

ensures \result >= *p && \result >= *q;

ensures \result == *p || \result == *q;

assigns \nothing;

*/

int max_ptr ( int *p, int *q ) {

if ( *p >= *q )

return *p ;

return *q ;

}
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Formal Specification and Deductive Verification with WP Function contracts

Behaviors

Specification by cases

I Global precondition (requires) applies to all cases

I Global postcondition (ensures, assigns) applies to all cases

I Behaviors define contracts (refine global contract) in particular cases
I For each case (each behavior)

I the subdomain is defined by assumes clause
I the behavior’s precondition is defined by requires clauses

I it is supposed to be true whenever assumes condition is true

I the behavior’s postcondition is defined by ensures, assigns clauses
I it must be ensured whenever assumes condition is true

I complete behaviors states that given behaviors cover all cases

I disjoint behaviors states that given behaviors do not overlap
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Formal Specification and Deductive Verification with WP Function contracts

Example 4

Specify using behaviors and prove the function abs:

// returns the absolute value of x

int abs ( int x ) {

if ( x >=0 )

return x ;

return -x ;

}
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Formal Specification and Deductive Verification with WP Function contracts

Example 4 (Continued) - Solution

#inc lude< l i m i t s . h>
/∗@ r e q u i r e s x > INT MIN ;

a s s i g n s \nothing ;
behav ior pos :

assumes x >= 0 ;
ensures \ r e s u l t == x ;

behav ior neg :
assumes x < 0 ;
ensures \ r e s u l t == −x ;

complete b e h a v i o r s ;
d i s j o i n t b e h a v i o r s ;

∗/
i n t abs ( i n t x ) {

i f ( x >=0 )
r e t u r n x ;

r e t u r n −x ;
}
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Formal Specification and Deductive Verification with WP Function contracts

Contracts and function calls

Pre/post of the caller and of the callee have dual roles in the caller’s proof

I Pre of the caller is assumed, Post of the caller must be ensured

I Pre of the callee must be ensured, Post of the callee is assumed
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Formal Specification and Deductive Verification with WP Function contracts

Example 5

Specify and prove the function max_abs

int abs ( int x );

int max ( int x, int y );

// returns maximum of absolute values of x and y

int max_abs( int x, int y ) {

x=abs(x);

y=abs(y);

return max(x,y);

}
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Formal Specification and Deductive Verification with WP Function contracts

Example 5 (Continued) - Explain the proof failure for
#i n c l u d e< l i m i t s . h>
/∗@ r e q u i r e s x > INT MIN ;

e n s u r e s ( x >= 0 ==> \ r e s u l t == x ) &&
( x < 0 ==> \ r e s u l t == −x ) ;

a s s i g n s \noth ing ; ∗/
i n t abs ( i n t x ) ;

/∗@ e n s u r e s \ r e s u l t >= x && \ r e s u l t >= y ;
e n s u r e s \ r e s u l t == x | | \ r e s u l t == y ;
a s s i g n s \noth ing ; ∗/

i n t max ( i n t x , i n t y ) ;

/∗@ e n s u r e s \ r e s u l t >= x && \ r e s u l t >= −x &&
\ r e s u l t >= y && \ r e s u l t >= −y ;

e n s u r e s \ r e s u l t == x | | \ r e s u l t == −x | |
\ r e s u l t == y | | \ r e s u l t == −y ;

a s s i g n s \noth ing ; ∗/
i n t max abs ( i n t x , i n t y ) {

x=abs ( x ) ;
y=abs ( y ) ;
r e t u r n max ( x , y ) ;

}
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Formal Specification and Deductive Verification with WP Function contracts

Example 5 (Continued) - Explain the proof failure for
#i n c l u d e< l i m i t s . h>
/∗@ r e q u i r e s x > INT MIN ;

e n s u r e s ( x >= 0 ==> \ r e s u l t == x ) &&
( x < 0 ==> \ r e s u l t == −x ) ;

a s s i g n s \noth ing ; ∗/
i n t abs ( i n t x ) ;

/∗@ e n s u r e s \ r e s u l t >= x && \ r e s u l t >= y ;
a s s i g n s \noth ing ; ∗/

i n t max ( i n t x , i n t y ) ;

/∗@ r e q u i r e s x > INT MIN ;
r e q u i r e s y > INT MIN ;
e n s u r e s \ r e s u l t >= x && \ r e s u l t >= −x &&
\ r e s u l t >= y && \ r e s u l t >= −y ;

e n s u r e s \ r e s u l t == x | | \ r e s u l t == −x | |
\ r e s u l t == y | | \ r e s u l t == −y ;

a s s i g n s \noth ing ; ∗/
i n t max abs ( i n t x , i n t y ) {

x=abs ( x ) ;
y=abs ( y ) ;
r e t u r n max ( x , y ) ;

}
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Formal Specification and Deductive Verification with WP Function contracts

Example 5 (Continued) - Solution
#i n c l u d e< l i m i t s . h>
/∗@ r e q u i r e s x > INT MIN ;

e n s u r e s ( x >= 0 ==> \ r e s u l t == x ) &&
( x < 0 ==> \ r e s u l t == −x ) ;

a s s i g n s \noth ing ; ∗/
i n t abs ( i n t x ) ;

/∗@ e n s u r e s \ r e s u l t >= x && \ r e s u l t >= y ;
e n s u r e s \ r e s u l t == x | | \ r e s u l t == y ;
a s s i g n s \noth ing ; ∗/

i n t max ( i n t x , i n t y ) ;

/∗@ r e q u i r e s x > INT MIN ;
r e q u i r e s y > INT MIN ;
e n s u r e s \ r e s u l t >= x && \ r e s u l t >= −x &&
\ r e s u l t >= y && \ r e s u l t >= −y ;

e n s u r e s \ r e s u l t == x | | \ r e s u l t == −x | |
\ r e s u l t == y | | \ r e s u l t == −y ;

a s s i g n s \noth ing ; ∗/
i n t max abs ( i n t x , i n t y ) {

x=abs ( x ) ;
y=abs ( y ) ;
r e t u r n max ( x , y ) ;
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Formal Specification and Deductive Verification with WP Programs with loops

Loops and automatic proof

I What is the issue with loops? Unknown, variable number of iterations

I The only possible way to handle loops: proof by induction
I Induction needs a suitable inductive property, that is proved to be

I satisfied just before the loop, and
I satisfied after k + 1 iterations whenever it is satisfied after k ≥ 0

iterations

I Such inductive property is called loop invariant
I The verification conditions for a loop invariant include two parts

I loop invariant initially holds
I loop invariant is preserved by any iteration
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Formal Specification and Deductive Verification with WP Programs with loops

Loop invariants - some hints

How to find a suitable loop invariant? Consider two aspects:
I identify variables modified in the loop

I variable number of iterations prevents from deducing their values
(relationships with other variables)

I define their possible value intervals (relationships) after k iterations
I use loop assigns clause to list variables that (might) have been

assigned so far after k iterations

I identify realized actions, or properties already ensured by the loop
I what part of the job already realized after k iterations?
I what part of the expected loop results already ensured after k

iterations?
I why the next iteration can proceed as it does? . . .

A stronger property on each iteration may be required to prove the final
result of the loop

Some experience may be necessary to find appropriate loop invariants
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Formal Specification and Deductive Verification with WP Programs with loops

Loop invariants - more hints
Remember: a loop invariant must be true

I before (the first iteration of) the loop, even if no iteration is possible

I after any complete iteration even if no more iterations are possible

I in other words, any time before the loop condition check

In particular, a for loop

f o r ( i =0; i<n ; i ++) { /∗ body ∗/ }

should be seen as

i =0; // a c t i o n b e f o r e t he f i r s t i t e r a t i o n
whi le ( i<n ) // an i t e r a t i o n s t a r t s by th e c o n d i t i o n check
{

/∗ body ∗/
i ++; // l a s t a c t i o n i n an i t e r a t i o n

}
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Formal Specification and Deductive Verification with WP Programs with loops

Loop termination

I Program termination is undecidable

I A tool cannot deduce neither the exact number of iterations, nor even
an upper bound

I If an upper bound is given, a tool can check it by induction

I An upper bound on the number of remaining loop iterations is the key
idea behind the loop variant

Terminology

I Partial correctness: if the function terminates, it respects its
specification

I Total correctness: the function terminates, and it respects its
specification
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Formal Specification and Deductive Verification with WP Programs with loops

Loop variants - some hints

I Unlike an invariant, a loop variant is an integer expression, not a
predicate

I Loop variant is not unique: if V works, V + 1 works as well

I No need to find a precise bound, any working loop variant is OK
I To find a variant, look at the loop condition

I For the loop while(exp1 > exp2 ), try loop variant exp1-exp2;

I In more complex cases: ask yourself why the loop terminates, and try
to give an integer upper bound on the number of remaining loop
iterations
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Formal Specification and Deductive Verification with WP Programs with loops

Example 6

Specify and prove the function all_zeros:

// returns a non -zero value iff all elements

// in a given array t of n integers are zeros

int all_zeros(int t[], int n) {

int k;

for(k = 0; k < n; k++)

if (t[k] != 0)

return 0;

return 1;

}
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Formal Specification and Deductive Verification with WP Programs with loops

Example 6 (Continued) - Solution

/∗@ r e q u i r e s n>=0 && \v a l i d ( t + ( 0 . . n−1)) ;
a s s i g n s \nothing ;
ensures \ r e s u l t != 0 <==>

( \ f o r a l l i n t e g e r j ; 0 <= j < n ==> t [ j ] == 0 ) ;
∗/
i n t a l l z e r o s ( i n t t [ ] , i n t n ) {

i n t k ;
/∗@ loop i n v a r i a n t 0 <= k <= n ;

loop i n v a r i a n t \ f o r a l l i n t e g e r j ; 0<=j<k ==> t [ j ]==0;
loop a s s i g n s k ;
loop v a r i a n t n−k ;

∗/
f o r ( k = 0 ; k < n ; k++)

i f ( t [ k ] != 0)
return 0 ;

return 1 ;
}
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Formal Specification and Deductive Verification with WP Programs with loops

Example 7
Specify and prove the function find_min:

// returns the index of the minimal element

// of the given array a of size length

int find_min(int* a, int length) {

int min , min_idx;

min_idx = 0;

min = a[0];

for (int i = 1; i<length; i++) {

if (a[i] < min) {

min_idx = i;

min = a[i];

}

}

return min_idx;

}
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Formal Specification and Deductive Verification with WP Programs with loops

Example 7 (Continued) - Solution
/∗@ r e q u i r e s l e n g t h > 0 && \ v a l i d ( a +(0 . . l eng th −1)) ;

a s s i g n s \nothing ;
ensures 0<=\ r e s u l t <l e n g t h &&

( \ f o r a l l i n t e g e r j ; 0<=j<l e n g t h ==> a [ \ r e s u l t ]<=a [ j ] ) ; ∗/
i n t f i n d m i n ( i n t ∗ a , i n t l e n g t h ) {

i n t min , m in i dx ;
m in i d x = 0 ;
min = a [ 0 ] ;
/∗@ loop i n v a r i a n t 0<=i<=l eng t h && 0<=min idx<l e n g t h ;

loop i n v a r i a n t \ f o r a l l i n t e g e r j ; 0<=j< i ==> min<=a [ j ] ;
loop i n v a r i a n t a [ m in i dx ]==min ;
loop a s s i g n s min , min idx , i ;
loop v a r i a n t l e n g t h − i ; ∗/

f o r ( i n t i = 1 ; i<l e n g t h ; i++) {
i f ( a [ i ] < min ) {

min i dx = i ;
min = a [ i ] ;

}
}
r e t u r n min i dx ;
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Formal Specification and Deductive Verification with WP My proof fails... What to do?

Proof failures

A proof of a VC for some annotation can fail for various reasons:

I incorrect implementation (→ check your code)

I incorrect annotation (→ check your spec)

I missing or erroneous (previous) annotation (→ check your spec)

I insufficient timeout (→ try longer timeout)

I complex property that automatic provers cannot handle.
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Formal Specification and Deductive Verification with WP My proof fails... What to do?

Analysis of proof failures

When a proof failure is due to the specification, the erroneous annotation
may be not obvious to find. For example:

I proof of a “loop invariant preserved” may fail in case of
I incorrect loop invariant
I incorrect loop invariant in a previous, or inner, or outer loop
I missing assumes or loop assumes clause
I too weak precondition
I . . .

I proof of a postcondition may fail in case of
I incorrect loop invariant (too weak, too strong, or inappropriate)
I missing assumes or loop assumes clause
I inappropriate postcondition in a called function
I too weak precondition
I . . .
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Formal Specification and Deductive Verification with WP My proof fails... What to do?

Analysis of proof failures (Continued)

I Additional statements (assert, lemma, . . . ) may help the prover
I They can be provable by the same (or another) prover or checked

elsewhere

I Separating independent properties (e.g. in separate, non disjoint
behaviors) may help

I The prover may get lost with a bigger set of hypotheses (some of
which are irrelevant)

When nothing else helps to finish the proof:

I an interactive proof assistant can be used

I Coq, Isabelle, PVS, are not that scary: we may need only a small
portion of the underlying theory
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Value Analysis

Goal

In this part, we will see

I how Value Analysis works

I how evolved is the new reimplementation

I how useful are derived analyses
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Value Analysis Value

Value Analysis Overview

Domain of variations of variables of the program

I abstract interpretation

I automatic analysis

I correct over-approximation

I alarms for potential invalid operations

I alarms for potential invalid ACSL annotations

I ensures the absence of runtime errors

I graphical interface: display the domain of each variable at each
program point
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Value Analysis Value

Value Historical Domains
I One hard-wired non-relation domain

I small sets of integers, e.g. {5, 18, 42}
I reduced product of intervals: quick to compute, e.g. [1..41]

I modulo: pretty good for arrays of structures, e.g. [1..41], 1%2

I precise representation of pointers, e.g. 32-bit aligned offset from &t[0]

I initialization information

I ad-hoc trace partitioning

I alarms on potential RTE and invalid annotations

I highly optimized

I excellent results on embedded code

I possible usage in low-level C code

demo
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Value Analysis Value

Value Parameterization

I Value is automatic

I but requires fine-tuned parameterization to be precise/efficient

I trade-off between time efficiency vs memory efficiency vs precision

I stubbing: main function and missing library function

I either provide C code or ACSL specification (usually, assigns)

I similar to testing

I lots of parameters, but a few almost always useful
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Value Analysis Value

Value Parameterization
Cont’d

I slevel n: superpose up to n states during the analysis

int main(void) {

int t[10];

for(int i = 0; i < 10; i++) t[i] = i;

}

I case splitting through ACSL disjunctions
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Value Analysis Value

Value Parameterization
Cont’d

I slevel n: superpose up to n states during the analysis

int main(void) {

int t[10];

for(int i = 0; i < 10; i++) t[i] = i;

}

I case splitting through ACSL disjunctions

int gcd(int x, int y) {

int a = x, b = y;

while(b!=0) {

int tmp = a % b;

a = b; b = tmp;

}

return a;

}

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 60 / 107



Value Analysis Value

Value Parameterization
Cont’d

I slevel n: superpose up to n states during the analysis

int main(void) {

int t[10];

for(int i = 0; i < 10; i++) t[i] = i;

}

I case splitting through ACSL disjunctions

int gcd(int x, int y) {

int a = x, b = y;

/*@ assert b < 0 || b == 0 || b > 0; */

while(b!=0) {

int tmp = a % b;

a = b; b = tmp;

/*@ assert b < 0 || b == 0 || b > 0; */

}

return a;

}
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Value Analysis Eva

Eva, Evolved Value Analysis

Major reimplementation in Frama-C Aluminium

I 100% compatible

I generic analysis on the abstract domain

I allow combination of abstract domains and some inter-reductions of
their states

I comparable analysis time for better results

I should be easy to add new domain

I Apron
I conditional predicates [Blazy, Bühler & Yakobowski @SCP’16]

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 61 / 107



Value Analysis Eva

Eva Domains

the new design relies on the separation between:

I values

I abstraction of the possible C values of an expression

I abstract transformers for arithmetic operators on expressions

I communication interface for abstract domains

I domains

I abstraction of the set of reachable states at a program point

I abstract transformers of states through statements

I can be queried for the values of some C expressions

I everyone can implement new domains easily

D. Bühler’s PhD works
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Value Analysis Derived analyses

Derived analyses

I results from Value/Eva are useful for other plug-ins

I domains of variations

I aliasing information

I dependency information

I program dependency graph (PDG)

I slicing

I impact analysis

I domain specific analysis

I information flow analysis [Assaf & al @SEC’13]
I concurrency analysis

example
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Structural Unit Testing with PathCrawler

Goal

In this part, we will see

I how to generate test cases using Frama-C/PathCrawler,

I how to specify test parameters,

I how to specify an oracle.
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Structural vs. functional testing 

Specification 

Implementation 

Analysis 

functional tests activate 

specified behaviour 
Oracle 

test results 
verdict 

specified properties 

 

Specification 

Oracle 

test results 
verdict 

specified properties 

 

Analysis 

structural tests activate 

implemented behaviour 

Implementation 

Functional: 

Structural: 
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Unit structural testing is useful 

Manually created functional test cases do not cover all the code 

 

• Certain « functional » test cases can be missed 

 

• Certain parts of code can depend on implementation choices and 
cannot be properly covered by the specification 

 

Evaluation of structural coverage 

 

Adding test cases to complete structural coverage 
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Unit structural testing can be mandatory 

Development, evaluation and certification standards 

 

• Common Criteria for IT Security Evaluation 

• DO-178B (avionics) 

• ECCS-E-ST-40C (space) 

• IEC/EN 61508 (Electronic Safety-related Systems) & derived standards: 

 ISO 26262 (automotive) 

 IEC/EN 50128 (rail) 

 IEC/EN 60601 (medical) 

 EC/EN 61513 (nuclear)  

 IEC/EN 60880 (nuclear safety-critical) 

 IEC/EN 61511 (process e.g. petrochemical, pharmaceutical) 
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CFG and code coverage by example 

  + 

  + 

control-flow graph (CFG) C code  

1 int f(int x){ 

2  if(x < 0) 

3   x = x + 1; 

4  if(x != 1) 

5   x = 2*x; 

6  return x; } 

all-path coverage branch coverage 

  statement coverage  

x = x + 1 

x < 0 ? 

x < 0 

x == 1 

infeasible path 

- 

- 

x < 0 

x != 1 
x != 1 ? 

x = 2*x 

x = x + 1 

x = x + 1 
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x0 >= 0 /\ x0 = 1 

 

x0 < 0 /\ x0 + 1 = 1 

Path predicate (path condition) by example 

   path predicate   

x0< 0  /\ x0 + 1 ≠ 1 

infeasible path  

 
unsatisfiable path  

predicate 

  + 

  + 

x = x + 1 

x < 0 ? 

- 

- 

x != 1 ? 

x = 2*x 

control-flow graph (CFG) C code  

  + 

  + 

  + 

- 

- 

- 

1 int f(int x){ 

2  if(x < 0) 

3   x = x + 1; 

4  if(x != 1) 

5   x = 2*x; 

6  return x; } 
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Automated structural testing… Why? 

Achieving desired test coverage manually is costly  

 

Must be done again after any code modification 

 

Infeasibility of a test objective can be difficult to show manually  

 

Automated structural testing tools can be used 

• to reach the uncovered objectives, 

• to determine that some of them are unreachable, 

• with a low cost overhead 
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PathCrawler tool 

• Concolic testing tool for C developed at CEA LIST 

 

• Input: a complete compilable source code 

 

• Automatically creates test cases to cover program paths 
(explored in depth-first search) 

 

• Uses code instrumentation, concrete and symbolic execution, 
constraint solving 

 

• Exact semantics: don’t rely on concrete values to approximate 
the path predicate 

 

• Similar to PEX, DART/CUTE, KLEE, SAGE etc. 
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PathCrawler explores the tree of feasible paths 

x0 < 0 x1 ≠ 1 
x1 = x0 + 1 

+2 +4 

depth-first search with non-deterministic choice of suffix 

test1:  x = -5 
x2 = 2x1 

1 int f(int x){ 

2  if(x < 0) 

3   x = x + 1; 

4  if(x != 1) 

5   x = 2*x; 

6  return x; } 
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PathCrawler explores the tree of feasible paths 

x0 < 0 x1 ≠ 1 
x1 = x0 + 1 

+2 +4 test1:  x = -5 
x2 = 2x1 

depth-first search with non-deterministic choice of suffix 

1 int f(int x){ 

2  if(x < 0) 

3   x = x + 1; 

4  if(x != 1) 

5   x = 2*x; 

6  return x; } 

x0 < 0 /\ (x0 + 1) ≠ 1   
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PathCrawler explores the tree of feasible paths 

x0 < 0 x1 ≠ 1 
x1 = x0 + 1 

+2 

-4 

+4 

x0 < 0 /\ (x0 + 1) = 1  infeas. 

test1:  x = -5 
x2 = 2x1 

depth-first search with non-deterministic choice of suffix 

x0 < 0 /\ (x0 + 1) ≠ 1   

1 int f(int x){ 

2  if(x < 0) 

3   x = x + 1; 

4  if(x != 1) 

5   x = 2*x; 

6  return x; } 
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PathCrawler explores the tree of feasible paths 

x0 < 0 x1 ≠ 1 
x1 = x0 + 1 

+2 

-4 

+4 

-2 

test1:  x = -5 
x2 = 2x1 

depth-first search with non-deterministic choice of suffix 

x0 < 0 /\ (x0 + 1) ≠ 1   

x0 < 0 /\ (x0 + 1) = 1  infeas. 

x0 ≥ 0 

1 int f(int x){ 

2  if(x < 0) 

3   x = x + 1; 

4  if(x != 1) 

5   x = 2*x; 

6  return x; } 
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PathCrawler explores the tree of feasible paths 

x0 < 0 x1 ≠ 1 

x0 ≠ 1 

x1 = x0 + 1 

+2 

-4 

+4 

+4 

-2 

test1:  x = -5 

test2:  x = 25 
x1 = 2x0 

x2 = 2x1 

depth-first search with non-deterministic choice of suffix 

x0 < 0 /\ (x0 + 1) ≠ 1   

x0 < 0 /\ (x0 + 1) = 1  infeas. 

x0 ≥ 0 /\ x0 ≠ 1  

1 int f(int x){ 

2  if(x < 0) 

3   x = x + 1; 

4  if(x != 1) 

5   x = 2*x; 

6  return x; } 
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PathCrawler explores the tree of feasible paths 

x0 < 0 x1 ≠ 1 

x0 ≠ 1 

x1 = x0 + 1 

+2 

-4 

-4 

+4 

+4 

-2 

test1:  x = -5 

test2:  x = 25 
x1 = 2x0 

x2 = 2x1 

depth-first search with non-deterministic choice of suffix 

x0 < 0 /\ (x0 + 1) ≠ 1   

x0 < 0 /\ (x0 + 1) = 1  infeas. 

x0 ≥ 0 /\ x0 = 1  

x0 ≥ 0 /\ x0 ≠ 1  
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PathCrawler explores the tree of feasible paths 

x0 < 0 x1 ≠ 1 

x0 ≠ 1 

x1 = x0 + 1 

x1 = 2x0 

+2 

-4 

-4 

+4 

+4 

-2 x0 ≥ 0 /\ x0 ≠ 1  

x0 ≥ 0 /\ x0 = 1  

test1:  x = -5 

test2:  x = 25 

test3:  x = 1 

x2 = 2x1 

depth-first search with non-deterministic choice of suffix 

x0 < 0 /\ (x0 + 1) ≠ 1   

x0 < 0 /\ (x0 + 1) = 1  infeas. 
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pathcrawler-online.com 

Freely available test-case generation web service 

• Instead of open-source or demonstration version 

• No porting, no installation, universal user interface  

• Well adapted to 

• Teaching 

• Use by project partners 

• Evaluation, understanding of Precondition and Oracle 

• Limited version (contact us for unlimited access) 
 

During the tutorial 

• Browser: no cache recommended 

• Do not start several test generation sessions in parallel 
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Example 1. Robust implementation of Tritype 

Simple program Tritype 

• inputs: three floating-point numbers i, j, k  

• returns the type of the triangle with sides i, j, k:  

3 (not a triangle), 2 (equilateral), 1 (isosceles), 0 (other) 
 

Robust : validity of inputs is tested (“not a triangle”) 

 Any test case can be interesting and useful 

 

“Test with predefined params” on pathcrawler-online.com 

Observe the number of test cases. Check the results. 
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PathCrawler outputs 

• A suite of test cases including 

 Input values (check these for Example 1) 

 Concrete outputs (check these for Example 1) 

 Symbolic outputs (better illustrated by Example 5) 

 Path predicate (better illustrated by Example 5) 

 Test driver 

 Oracle verdict (better illustrated by Example 10) 

• Explored program paths with  

 their status (covered, infeasible, assume violated …) 

 path predicate (only for covered paths in online version) 
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Outline 

1. Structural testing: a brief introduction 

2. PathCrawler tool 

3. Test parameters 

4. Oracle and program debugging 

5. Strengths and limits of structural testing 

6. Structural test for other properties/purposes 

7. Bypassing the limits 
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Example 2. Non robust implementation of Tritype 

 

No validity check lines 10-13, no “not a triangle” answer 

 Are the test cases still interesting? 

 

“Test with predefined params” on pathcrawler-online.com 

Observe the number of test cases. Check the results. 

 

Where is the problem? 

Do we really want such input values in this case? 
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Exercise 3. Customize test parameters for Tritype 

How to generate appropriate test cases only ? 

 define a precondition! 
 

Exercise. Start from Example 2. “Customize test parameters” 

 

- Restrict the domains of inputs i, j, k to non negative values: 

[ 0 .. 1.7976931348623157e+308 ] 

- Add 3 unquantified preconditions: 

i + j > k 

j + k > i 

i + k > j 

- Confirm parameters and check the results. 
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Example 4. C Precondition for Tritype 

Another way to define a precondition  

 in a C function 

 

Tritype_precond returns 1 iff the precondition is verified 

 

“Customize test parameters” on pathcrawler-online.com 

to check that Pathcrawler has activated the C precondition. 

 

Confirm & observe the number of test cases & results. 
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Test parameters 

• Define admissible inputs (precondition) 

 Domains of input variables 

 Relations between variables… 

• Wrong test parameters may 

 Indicate inexistent bugs (the bug is in the input) 

 Provoke runtime errors 
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Example 5. Merge with default parameters 

 

Merge of two sorted arrays t1, t2 into a sorted array t3 

• inputs: arrays t1[3], t2[3], t3[6] of fixed size 

 

“Test with predefined params” on pathcrawler-online.com 

Check the concrete outputs. 

What is wrong with the concrete outputs?  

 

This example also illustrates well the information on array inputs, 

symbolic outputs and path predicate included in a test-case 
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Exercise 6. Quantified precondition for Merge  

 

If the input arrays t1 and t2 are not ordered, Merge does not work! 

 

Exercise. Start from Example 5. “Customize test parameters” 

- Add two quantified preconditions (INDEX is a reserved word): 
for all INDEX  
                    such that INDEX < 2 
                                                      we have t1[ INDEX ]<= t1[ INDEX+1 ] 
for all INDEX  
                    such that INDEX < 2 
                                                      we have t2[ INDEX ]<= t2[ INDEX+1 ] 

- Confirm parameters and check the results. 

 

Are the input arrays t1 and t2 sorted now? Is t3 sorted? 
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Example 7. Merge with pointer inputs 

Merge of two sorted arrays t1, t2 into a sorted array t3 
 

• inputs: arrays t1[ ], t2[ ], t3[ ] of variable size,  

l1 the size of t1, l2 the size of t2, l1+l2 the size of t3 

• precondition t1, t2 ordered arrays predefined 

• reduced domains of elements [-100,100] predefined 
 

“Test with predefined params” on pathcrawler-online.com 

Check the results. 
 

Why are there errors?  
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Exercise 8. Input arrays (pointers) size 

t1, t2, t3 should contain resp. l1, l2, l1+l2 allocated elements. 

Wrong input array size => Runtime errors while executing tests! 
 

Exercise. Start from Example 7. “Customize test parameters” 

- Specify domains for dim(t1), dim(t2) , dim(t3) 

0 <= dim(t3) <= 6 

0 <= dim(t2) <= 3 

0 <= dim(t1) <= 3 

- Add three unquantified preconditions: 

dim(t1) == l1  

dim(t2) == l1 

dim(t3) == l1 + l2 

- Confirm parameters and check the results. 
 

Are there errors? Why? How many test cases are generated? 
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Partial test coverage : k-path criterion 

• In presence of loops, all-path criterion 
may generate too many test cases 

• The user may want to limit their number 
 

• k-path coverage restricts the all-path 
criterion to paths with at most k 
consecutive iterations of each loop 
(k=0,1,2…) 
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Exercise 9. Merge with partial test coverage: k-path 

To reduce the number of test cases, modify test criterion. 

 

Exercise. Continue Exercise 8 with the same test 

parameters you defined. “Customize test parameters” 

- Set “Path selection strategy” to 2 (for k-path with k=2) 

- Confirm parameters and check the results. 

 

How many test cases are generated now? 
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Outline 

1. Structural testing: a brief introduction 

2. PathCrawler tool 

3. Test parameters 

4. Oracle and program debugging 

5. Strengths and limits of structural testing 

6. Structural test for other properties/purposes 

7. Bypassing the limits 
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Oracle 

Role of an oracle: 

• examines the inputs and outputs of each test 

• decides whether the implementation has given the expected 
results  

• provides a verdict (success, failure) 

 

An oracle can be provided by 

• another, or previous implementation 

• checking the results without implementing the algorithm 
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Exercise 10a. Oracle and debugging 

 

Start from Example 10a, “Customize test parameters” to 

see an example of an oracle 

 

 

Is this oracle complete ? 
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Exercise 10b. Oracle and debugging 

 

Start from Example 10b, “Customize test parameters” to 

see another example of an oracle 

 

 

Is this oracle complete ? 
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Exercise 10c. Oracle and debugging 

 

Start from Example 10a, “Customize test parameters” to 

see the predefined oracle 

 

Exercise. Confirm parameters and check the results.  

Can you find an error in the implementation?  

 

 

Hint: The paths of  failed test cases have a common part… 
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Outline 

1. Structural testing: a brief introduction 

2. PathCrawler tool 

3. Test parameters 

4. Oracle and program debugging 

5. Structural test for other properties/purposes 

6. Strengths and limits of structural testing 

7. Bypassing the limits 
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Structural test for other properties or purposes 

PathCrawler explores the implementation and can also be used  to check: 

• for runtime errors during program execution (seen in Ex.7) 

• for anomalies detected during analysis of the covered paths: 

•  uninitialised variables 

•  buffer overflow 

•  integer overflow 

•  … 

• whether the implementation performs unnecessary computation 

• the effective execution time of each path (at least for one set of inputs), 
by running the generated tests on a platform which can measure 
execution time 

• for unreachable or “dead” code: check infeasible partial paths. 

 If all paths leading to the code are infeasible then the code is 
unreachable (for the given precondition): is this intentional ? 
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Runtime error or anomaly: search space is pruned 

TC_2 

TC_3 

TC_1 

TC_2 

TC_4 

TC_1 

incomplete  coverage 
error during test execution or 

anomaly detected by analysis 

TC_3 
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In this example, the local variables are not always initialised 

before their value is read. This is a typical “anomaly”: 

probably a bug but does not cause a run-time error. 

 
 

“Test with predefined parameters” and check the results. 
 

 

Are there any errors or warnings? Why? 

Are all feasible paths covered? 

 

  

Example Uninit. Uninitialised variable 
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Bsearch is an implementation of dichotomic search 

for value x in sorted array A.  
 

 

“Customize test parameters” to see the predefined oracle 

 and parameters. Confirm them and check the results. 
 

 

Examine the predicates and input values of the cases where 

x is present. Is this an efficient implementation? 

 

Example UC. Unnecessary computation 
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Outline 

1. Structural testing: a brief introduction 
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3. Test parameters 

4. Oracle and program debugging 

5. Structural test for other properties/purposes 

6. Strengths and limits of structural testing 

7. Bypassing the limits 
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Dichotomic search: structural vs. other strategies 

Example: dichotomic search for a value int x in a sorted array int A[10].  

Random testing: Unlikely to construct cases in which x equals one of the 

elements of A and to detect false negatives (x not detected when present) 

Functional testing: Constructs  

• many cases in which x is present (probably from 1 to 10?) and  

• fewer cases in which x is absent (1 or 2 ?)  

Structural testing: Constructs a case  

• for each position in A for which x can be detected and  

• for each relation to elements of A for which absence of x is detected. 

Structural test. constructs more presence cases than random, more absence  

cases than functional, rarely constructs cases where x is present by chance. 
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Example Chance. Failures by chance? 

Bsearch is another implementation of dichotomic search  

for value x in sorted array A. It contains a bug which  

can result in false positives (x present but not detected).  
 

The parameters are the same as in the previous example. 

Confirm them and check the results. 

 

Is the presence or absence of x in A  

always determined by the path predicate? 

 

Hint: look at failing cases or those where x is present.  
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Bsearch is another erroneous implementation of 

dichotomic search for value x in sorted array A. 

 

The parameters are the same as in the previous example. 

Confirm them and check the results. 
 

 

Are there any failures? 

 

Example 11. Limitations of structural testing 
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Limitations of structural testing 

Structural testing is  

• effective when a bug is always revealed by a path, 

• less so when only some of the values which activate 
the path cause the bug to be revealed 
 

PathCrawler chooses arbitrary values to test each path 

They may not be the values which will reveal a bug 

 

We can make PathCrawler go looking for bugs 

by sub-dividing the paths 
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Outline 

1. Structural testing: a brief introduction 
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3. Test parameters 
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Cross-checking conformity with a specification 

x0<0 x1≠1 

x0≠1 

x1 = x0+1 imp = 2x1 

imp = 2x0 

imp = x0 

+ 

- 

+ 

+ 

- 

int f(int x){ 

 if(x < 0) 

  x = x + 1; 

 if(x != 1) 

  x = 2*x; 

 return x; } 

implementation 
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Cross-checking conformity with a specification 

x0<0 x1≠1 

x0≠1 

x1 = x0+1 imp = 2x1 

imp = 2x0 

imp = x0 

+ 

- 

+ 

+ 

- 

int f(int x){ 

 if(x < 0) 

  x = x + 1; 

 if(x != 1) 

  x = 2*x; 

 return x; } 

implementation specification 

If x is less than 1 then 

the result should be 2(x + 1) 

else the result should be 2x 
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Cross-checking conformity with a specification 

x0<0 x1≠1 

x0≠1 

x1 = x0+1 imp = 2x1 

imp = 2x0 

imp = x0 

+ 

- 

+ 

+ 

- 

x0<1 
spec = 2(x0+1) 

spec = 2x0 

- 

+ 

implementation specification 

int f(int x){ 

 if(x < 0) 

  x = x + 1; 

 if(x != 1) 

  x = 2*x; 

 return x; } 

int spec_f(int x){ 

 if(x < 1) 

  x = 2*(x + 1); 

 else 

  x = 2*x; 

 return x; } 
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Cross-checking conformity with a specification 

x0<0 x1≠1 

x0≠1 

x1 = x0+1 imp = 2x1 

imp = 2x0 

imp = x0 

+ 

- 

+ 

+ 

- 

x0<1 
spec = 2(x0+1) 

spec = 2x0 

- 

+ 

implementation specification 

int f(int x){ 

 if(x < 0) 

  x = x + 1; 

 if(x != 1) 

  x = 2*x; 

 return x; } 

int spec_f(int x){ 

 if(x < 1) 

  x = 2*(x + 1); 

 else 

  x = 2*x; 

 return x; } 

imp=spec 

- 

+ OK 

BUG 

comparison 

int cross_f(int x){ 

 int imp = f(x); 

 int spec=spec_f(x); 

 if(imp!=spec) 

   return 0; 

 else return 1; } 
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Cross-checking conformity with a specification 

x0<0 x1≠1 
x1 = x0+1 imp = 2x1 

+ x0<1 
spec = 2(x0+1) 

+ + 

spec = 2x0 

- 

x0<0 x1≠1 

x0≠1 

x1 = x0+1 imp = 2x1 

imp = 2x0 

imp = x0 

+ 

- 

+ 

+ 

- 

x0<1 
spec = 2(x0+1) 

spec = 2x0 

- 

+ imp=spec 

- 

+ OK 

BUG 

int cross_f(int x){ 

 int imp = f(x); 

 int spec=spec_f(x); 

 if(imp!=spec) 

   return 0; 

 else return 1; } 
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Cross-checking conformity with a specification 

x0<0 x1≠1 
x1 = x0+1 imp = 2x1 

+ x0<1 
spec = 2(x0+1) 

+ + 
x0 < 0 /\ (x0+ 1) ≠ 1 /\ x0 < 1 → x0 < 0 

x0 < 0 /\ (x0+ 1) ≠ 1 /\ x0  ≥ 1 

x0<0 x1≠1 

x0≠1 

x1 = x0+1 imp = 2x1 

imp = 2x0 

imp = x0 

+ 

- 

+ 

+ 

- 

x0<1 
spec = 2(x0+1) 

spec = 2x0 

- 

+ imp=spec 

- 

+ OK 

BUG 

int cross_f(int x){ 

 int imp = f(x); 

 int spec=spec_f(x); 

 if(imp!=spec) 

   return 0; 

 else return 1; } 
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Cross-checking conformity with a specification 

x0<0 x1≠1 
x1 = x0+1 imp = 2x1 

+ x0<1 
spec = 2(x0+1) 

+ imp=spec + OK 

BUG 

+ 

x0<0 x1≠1 

x0≠1 

x1 = x0+1 imp = 2x1 

imp = 2x0 

imp = x0 

+ 

- 

+ 

+ 

- 

x0<1 
spec = 2(x0+1) 

spec = 2x0 

- 

+ imp=spec 

- 

+ OK 

BUG 

int cross_f(int x){ 

 int imp = f(x); 

 int spec=spec_f(x); 

 if(imp!=spec) 

   return 0; 

 else return 1; } 
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Cross-checking conformity with a specification 

x0<0 x1≠1 
x1 = x0+1 imp = 2x1 

+ x0<1 
spec = 2(x0+1) 

+ imp=spec + OK 

BUG 

+ x0 < 0 /\ 2(x0+1) = 2(x0+1) 

x0 < 0 /\ 2(x0+1) ≠ 2(x0+1) 

x0<0 x1≠1 

x0≠1 

x1 = x0+1 imp = 2x1 

imp = 2x0 

imp = x0 

+ 

- 

+ 

+ 

- 

x0<1 
spec = 2(x0+1) 

spec = 2x0 

- 

+ imp=spec 

- 

+ OK 

BUG 
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Cross-checking conformity with a specification 

x0<0 x1≠1 

x0≠1 

x1 = x0+1 imp = 2x1 

imp = 2x0 

+ 

+ 

- x0<1 
spec = 2(x0+1) 

- 

+ 

x0<1 
spec = 2(x0+1) 

+ imp=spec + OK 

BUG 

spec = 2x0 

+ 
x0 < 0 

x0  ≥ 0 /\ x0 ≠  1 /\ x0 < 1 → x0  = 0  

x0 ≥ 0 /\ x0 ≠  1 /\ x0 ≥ 1 → x0 > 1  

x0<0 x1≠1 

x0≠1 

x1 = x0+1 imp = 2x1 

imp = 2x0 

imp = x0 

+ 

- 

+ 

+ 

- 

x0<1 
spec = 2(x0+1) 

spec = 2x0 

- 

+ imp=spec 

- 

+ OK 

BUG 
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Cross-checking conformity with a specification 

x0<0 x1≠1 

x0≠1 

x1 = x0+1 imp = 2x1 

imp = 2x0 

+ 

+ 

- x0<1 
spec = 2(x0+1) 

- 

+ imp=spec OK 

BUG 

imp=spec + OK 

BUG 

- 

x0<1 
spec = 2(x0+1) 

+ imp=spec + OK 

BUG 

spec = 2x0 

+ 

x0 = 0 /\ 2x0 = 2(x0+1) 

x0 = 0 /\ 2x0 ≠ 2(x0+1) 

x0 > 1 /\ 2x0 = 2x0 

x0 > 1 /\ 2x0 ≠ 2x0 

x0<0 x1≠1 

x0≠1 

x1 = x0+1 imp = 2x1 

imp = 2x0 

imp = x0 

+ 

- 

+ 

+ 

- 

x0<1 
spec = 2(x0+1) 

spec = 2x0 

- 

+ imp=spec 

- 

+ OK 

BUG 
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Cross-checking conformity with a specification 

x0<0 x1≠1 

x0≠1 

x1 = x0+1 imp = 2x1 

imp = 2x0 

imp = x0 

- 

+ 

+ 

- x0<1 
spec = 2(x0+1) 

spec = 2x0 

- 

+ imp=spec OK 

BUG 

imp=spec + OK 

BUG 

- 

x0<1 

- imp=spec 

- 

OK 

BUG 

x0<1 
spec = 2(x0+1) 

+ imp=spec + OK 

BUG 

spec = 2x0 

+ 
x0 < 0 

x0 = 0 

x0 > 1 

x0 = 1 

x0<0 x1≠1 

x0≠1 

x1 = x0+1 imp = 2x1 

imp = 2x0 

imp = x0 

+ 

- 

+ 

+ 

- 

x0<1 
spec = 2(x0+1) 

spec = 2x0 

- 

+ imp=spec 

- 

+ OK 

BUG 
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Example 12. Testing conformity with a specification 

 

Spec_Bsearch is a specification for Bsearch, similar to 

the oracle. Test function CompareBsearchSpec that 

• stores inputs, calls Bsearch, 

• calls Spec_Bsearch to provide a verdict. 

All-path testing will try cover all combinations of paths in 

Bsearch and Spec_Bsearch. 

“Customize test parameters” to see the predefined oracle 

and parameters. Confirm them and check the results. 
 

Why are failures reported this time? Can you find the bug? 
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Outline

Frama-C Overview

Formal Specification and Deductive Verification with WP
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Structural Unit Testing with PathCrawler
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Runtime Verification with E-ACSL

Goal

In this part, we will see

I the differences between ACSL and E-ACSL

I how to check E-ACSL properties at runtime

I how static analyses improve efficiency of the monitor

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 67 / 107



Runtime Verification with E-ACSL E-ACSL Specification Language

From ACSL to E-ACSL

I ACSL was designed for static analysis tools only

I based on logic and mathematics

I cannot execute any term/predicate (e.g. unbounded quantification)

I cannot be used by dynamic analysis tools (e.g. testing or monitoring)

I E-ACSL: executable subset of ACSL [Delahaye, K. & S. @RV’13]

I few restrictions

I one compatible semantics change
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Runtime Verification with E-ACSL E-ACSL Specification Language

E-ACSL Restrictions

I quantifications must be guarded

\forall τ1 x1,. . ., τn xn;
a1 <= x1 <= b1 && . . . && an <= xn <= bn

==> p

\exists τ1 x1,. . ., τn xn;
a1 <= x1 <= b1 && . . . && an <= xn <= bn

&& p

I sets must be finite

I no lemmas nor axiomatics

I no way to express termination properties

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 69 / 107



Runtime Verification with E-ACSL E-ACSL Specification Language

E-ACSL Integers

I mathematical integers to preserve ACSL semantics

I many advantages compared to bounded integers

I automatic theorem provers work much better with such integers than
with bounded integers arithmetics

I specify without implementation details in mind

I still possible to use bounded integers when required

I much easier to specify overflows
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Runtime Verification with E-ACSL E-ACSL Specification Language

Error in annotations?

I ACSL logic is total and 1/0 is logically significant

I help the user to write simple specification like u/v == 2

I 1/0 is defined but not executable

I E-ACSL logic is 3-valued

I the semantics of 1/0 is “undefined”

I lazy operators &&, ||, _?_:_, ==>

I Chalin’s Runtime Assertion Checking semantics

I consistent with ACSL: valid (resp. invalid) E-ACSL predicates remain
valid (resp. invalid) in ACSL

I evaluating an undefined term must not crash
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Runtime Verification with E-ACSL E-ACSL Plug-in

E-ACSL plug-in at a Glance

http://frama-c.com/eacsl.html

I convert E-ACSL annotations into C code

I implemented as a Frama-C plug-in

int div(int x, int y) {

/*@ assert y-1 != 0; */

return x / (y-1);

}

int div(int x, int y) {

/*@ assert y-1 != 0; */

e acsl assert(y-1 != 0);

return x / (y-1);

}

E-ACSL

I the general translation is more complex than it may look

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 72 / 107

http://frama-c.com/eacsl.html


Runtime Verification with E-ACSL E-ACSL Plug-in

E-ACSL plug-in at a Glance

http://frama-c.com/eacsl.html

I convert E-ACSL annotations into C code

I implemented as a Frama-C plug-in

int div(int x, int y) {

/*@ assert y-1 != 0; */

return x / (y-1);

}

int div(int x, int y) {

/*@ assert y-1 != 0; */

e acsl assert(y-1 != 0);

return x / (y-1);

}

E-ACSL

I the general translation is more complex than it may look
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Runtime Verification with E-ACSL E-ACSL Plug-in

E-ACSL Integer Support
I use GMP library for mathematical integers

/*@ assert y-1 == 0; */

mpz t e_acsl_1 , e_acsl_2 , e_acsl_3 , e_acsl_4;

int e_acsl_5;

mpz init set si(e_acsl_1 , y); // e acsl 1 = y

mpz init set si(e_acsl_2 , 1); // e acsl 2 = 1

mpz init(e_acsl_3 );

mpz sub(e_acsl_3 , e_acsl_1 , e_acsl_2 ); // e acsl 3 = y-1

mpz init set si(e_acsl_4 , 0); // e acsl 4 = 0

e_acsl_5 = mpz cmp(e_acsl_3 , e_acsl_4 ); // (y-1) == 0
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mpz clear(e_acsl_3 ); mpz clear(e_acsl_4 );

I how to restrict GMPs as most as possible? on-the-fly typing

almost no GMP in practice
[Jakobsson, K. & S. @JFLA’15]
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Runtime Verification with E-ACSL E-ACSL Plug-in

E-ACSL Integer Support
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Runtime Verification with E-ACSL E-ACSL Plug-in

E-ACSL RTE Detection

must prevent introducing RTE when translating annotations

int foo(int u, int v) {

/*@ assert u/v == 2; */

return u/v;

}

int foo(int u, int v) {

/*@ assert u/v == 2; */

e acsl assert(u/v == 2);

return u/v;

}

E-ACSL

int foo(int u, int v) {

/*@ assert v != 0; */

/*@ assert u/v == 2; */

e acsl assert(u/v == 2);

return u/v;

}

RTE plug-in

int foo(int u, int v) {

/*@ assert v != 0; */

e acsl assert(v != 0);

/*@ assert u/v == 2; */

e acsl assert(u/v == 2);

return u/v;

}

E-ACSL
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Runtime Verification with E-ACSL E-ACSL Plug-in

E-ACSL Memory Observation

I memory-related constructs like \valid, \initialized,
\block length, \base addr, \offset require to know the memory
structure at runtime

I C library for memory observation

I Patricia-trie based implementation [K., Petiot & S. @SAC’13]

I New shadow-memory based implementation [with K. Vorobyov]

I once again the translation is quite heavy

I dataflow analysis to instrument the code only when required

I backward

I over-approximating

I parameterized by an alias analysis

I [Jakobsson, K. & S. @JFLA’15 & @SAC’15]
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Runtime Verification with E-ACSL E-ACSL Plug-in

E-ACSL Memory Observation
void f(void) {

int x, y, z, *p;

p = &x;

x = 0;

y = 1;

z = 2;

/*@ assert \valid(p); */

*p = 3;

}
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Runtime Verification with E-ACSL E-ACSL Plug-in

E-ACSL Memory Observation
void f(void) {

int x, y, z, *p;

// allocations of local variables

store block((void *)(&p), 4U); store block((void *)(&z), 4U);

store block((void *)(&y), 4U); store block((void *)(&x), 4U);

full init((void *)(&p)); p = &x; // initialization of p

full init((void *)(&x)); x = 0; // initialization of x

full init((void *)(&y)); y = 1; // initialization of y

full init((void *)(&z)); z = 2; // initialization of z

// validity check

/*@ assert \valid(p); */

{ int e acsl initialized, e acsl and;

e acsl initialized = initialized((void *)(&p),sizeof(int *));

if ( e acsl initialized) { int e acsl valid;

e acsl valid = valid((void *)p, sizeof(int));

e acsl and = e acsl valid;

} else e acsl and = 0;

e acsl assert( e acsl and); }
*p = 3;

// free allocated variables

delete block((void *)(&p)); delete block((void *)(&z));

delete block((void *)(&y)); delete block((void *)(&x));

}
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Runtime Verification with E-ACSL E-ACSL Plug-in

Possible Usage in Combination with Other Tools

I check unproved properties of static analyzers (e.g. Value, WP)

I check the absence of runtime error in combination with RTE

I check memory consumption and violations (use-after-free)

I help testing tools by checking properties which are not easy to
observe

I complement program transformation tools

I temporal properties (Aoräı)

I information flow properties (SecureFlow)
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Combinations of Analyses

Outline

Frama-C Overview

Formal Specification and Deductive Verification with WP

Value Analysis

Structural Unit Testing with PathCrawler

Runtime Verification with E-ACSL

Combinations of Analyses
Detecting runtime errors by static analysis and testing (SANTE)
Deductive verification assisted by testing (STADY)
Optimizing testing by value analysis and weakest precondition (LTest)

Conclusion
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Combinations of Analyses

Goal

In this part, we

I describe some combinations of static and dynamic analyses,

I illustrate their implementation as plugins of Frama-C.
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Combinations of Analyses Detecting runtime errors by static analysis and testing (SANTE)

Outline

Frama-C Overview

Formal Specification and Deductive Verification with WP

Value Analysis

Structural Unit Testing with PathCrawler

Runtime Verification with E-ACSL

Combinations of Analyses
Detecting runtime errors by static analysis and testing (SANTE)
Deductive verification assisted by testing (STADY)
Optimizing testing by value analysis and weakest precondition (LTest)

Conclusion
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Combinations of Analyses Detecting runtime errors by static analysis and testing (SANTE)

The C language is risky!

I Low-level operations

I Widely used for critical software

I Lack of security mechanisms

Runtime errors are common:

I Division by 0

I Invalid array index

I Invalid pointer

I Non initialized variable

I Out-of-bounds shifting

I Arithmetical overflow

I . . .
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Combinations of Analyses Detecting runtime errors by static analysis and testing (SANTE)

SANTE: Goals

Detection of runtime errors: two approaches

Static analysis

Issue: leaves unconfirmed errors
that can be safe

Testing

Issue: cannot detect all errors if
test coverage is partial

Goal: Combine both techniques to detect runtime errors more efficiently
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Combinations of Analyses Detecting runtime errors by static analysis and testing (SANTE)

Plugin PathCrawler for test generation

Symbolic Execution

Constraint solverConcrete Execution

Constraints of the path to cover

Test data

Executed path

I Performs Dynamic Symbolic Execution (DSE)

I Automatically creates test data to cover program paths (explored in
depth-first search, [Botella et al. AST 2009])

I Uses code instrumentation, concrete and symbolic execution,
constraint solving

I Exact semantics: doesn’t approximate path constraints

I Similar to PEX, DART/CUTE, KLEE, SAGE, etc.

I Online version: pathcrawler-online.com
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Combinations of Analyses Detecting runtime errors by static analysis and testing (SANTE)

Plugin “VALUE” for value analysis

I Based on abstract interpretation [Cousot, POPL 1977]

I Computes an overapproximation of sets of possible values of variables
at each instruction

I Considers all possible executions

I Reports alarms when cannot prove absence of errors
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Combinations of Analyses Detecting runtime errors by static analysis and testing (SANTE)

Plugin Slicing

I Simplifies the program using control and data dependencies

I Preserves the executions reaching a point of interest (slicing criterion)
with the same behavior

I Example of slicing criteria: instructions, annotations (alarms),
function calls and returns, read and write accesses to selected
variables. . .
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Combinations of Analyses Detecting runtime errors by static analysis and testing (SANTE)

SANTE: Methodology for detection of runtime errors

Program p

Value analysis

Program p, Alarms

Program slicing

Slice p′, Alarms

Test generation

Diagnostic

I Value analysis detects alarms

I Slicing reduces the program (w.r.t. one
or several alarms)

I Testing (PathCrawler) is used to generate
tests on a reduced program to diagnose
alarms (after adding error branches to
trigger errors)

I Diagnostic
I bug if a counter-example is generated
I if not, and all paths were explored, the

alarm is safe
I otherwise, unknown
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Combinations of Analyses Detecting runtime errors by static analysis and testing (SANTE)

SANTE: Experiments

I 9 benchmarks with known errors (from Apache, libgd, . . . )

Alarm classification:

I all known errors found by SANTE

I SANTE leaves less unclassified alarms than VALUE (by 88%) or
PathCrawler (by 91%) alone

Program reduction:

I 32% in average, up to 89% for some examples

I program paths in counter-examples are in average 19% shorter

Execution time:

I Average speedup w.r.t. testing alone is 43% (up to 98% for some
examples)

[Chebaro et al. TAP 2009, TAP 2010, SAC 2012, ASEJ 2014]
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Combinations of Analyses Detecting runtime errors by static analysis and testing (SANTE)

Application to security

Program p

Value & Taint analysis

Program p, Alarms

Program slicing

Slice p′, Alarms

Fuzz testing

Diagnostic

I Reused in EU FP7 project STANCE (CEA
LIST, Dassault, Search Lab, FOKUS,...)

I Taint analysis to identify most
security-relevant alarms

I Fuzz testing (Flinder tool) for efficient
detection of vulnerabilities

I Applied to the recent Heartbleed security
flaw (2014) in OpenSSL, other case
studies in progress

I [Kiss et al., HVC 2015]
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Combinations of Analyses Deductive verification assisted by testing (STADY)

Outline

Frama-C Overview

Formal Specification and Deductive Verification with WP

Value Analysis

Structural Unit Testing with PathCrawler

Runtime Verification with E-ACSL

Combinations of Analyses
Detecting runtime errors by static analysis and testing (SANTE)
Deductive verification assisted by testing (STADY)
Optimizing testing by value analysis and weakest precondition (LTest)

Conclusion

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 89 / 107



Combinations of Analyses Deductive verification assisted by testing (STADY)

Plugin WP for deductive verification

I Based on Weakest Precondition calculus [Dijkstra, 1976]

I Proves that a given program respects its specification

The enemy: proof failures, i.e. unproven properties
I can result from very different reasons

I an error in the code,
I an insufficient precondition,
I a too weak subcontract (e.g. loop invariant, callee’s contract),
I a too strong postcondition,. . .

I often require costly manual analysis
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Combinations of Analyses Deductive verification assisted by testing (STADY)

Example: a C program annotated in ACSL

/∗@ r e q u i r e s n>=0 && \ v a l i d ( t + ( 0 . . n−1)) ;
a s s i g n s \noth ing ;
e n s u r e s \ r e s u l t != 0 <==>

( \ f o r a l l i n t e g e r j ; 0 <= j < n ==> t [ j ] == 0 ) ;
∗/
i n t a l l z e r o s ( i n t t [ ] , i n t n ) {

i n t k ;
/∗@ l oop i n v a r i a n t 0 <= k <= n ;

l oop i n v a r i a n t \ f o r a l l i n t e g e r j ; 0<=j<k ==> t [ j ]==0;
l oop a s s i g n s k ;
l oop v a r i a n t n−k ;

∗/
f o r ( k = 0 ; k < n ; k++)

i f ( t [ k ] != 0)
r e t u r n 0 ;

r e t u r n 1 ;
}

Can be proven
in Frama-C/WP
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Combinations of Analyses Deductive verification assisted by testing (STADY)

Example: An erroneous version

/∗@ r e q u i r e s n>=0 && \ v a l i d ( t + ( 0 . . n−1)) ;
a s s i g n s \noth ing ;
e n s u r e s \ r e s u l t != 0 <==>

( \ f o r a l l i n t e g e r j ; 0 <= j < n ==> t [ j ] == 0 ) ;
∗/
i n t a l l z e r o s ( i n t t [ ] , i n t n ) {

i n t k ;
/∗@ l oop i n v a r i a n t 0 <= k <= n ;

l oop a s s i g n s k ;
l oop v a r i a n t n−k ;

∗/
f o r ( k = 0 ; k < n ; k++)

i f ( t [ k ] != 0)
r e t u r n 0 ;

r e t u r n 1 ;
}

Postcondition
unproven. . .

. . . because of a missing
loop invariant.

The reason could also be a
wrong precond, or postcond., or code
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Combinations of Analyses Deductive verification assisted by testing (STADY)

STADY: Goals

I Help the validation engineer to understand and fix the proof failures

I Provide a counter-example to illustrate the issue

I Do it automatically and efficiently
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Combinations of Analyses Deductive verification assisted by testing (STADY)

STADY: Methodology for diagnosis of proof failures

I Define three kinds of proof failures:
I non-compliance (between the code and its specification)
I subcontract weakness (for a loop or a called function)
I prover incapacity

I Perform dedicated instrumentation allowing to detect
non-compliances and subcontract weaknesses

I Apply testing (PathCrawler) to try to find a counter-example and to
classify the proof failure

I Indicate a more precise feedback (if possible, with a counter-example)
to help the user to understand and to fix the proof failure
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Combinations of Analyses Deductive verification assisted by testing (STADY)

STADY: Initial experiments

I 20 annotated (provable) programs (from [Burghardt, Gerlach])

I 928 mutants generated (erroneous code, erroneous or missing
annotation)

I STADY is applied to classify proof failures

Alarm classification:

I STADY classified 97% proof failures

Execution time: comparable to WP

I WP takes in average 2.6 sec. per mutant (13 sec. per unproven
mutant)

I STADY takes in average 2.7 sec. per unproven mutant

Partial coverage:

I Testing with partial coverage remains efficient in STADY

[Petiot et al. TAP 2014, SCAM 2014, TAP 2016]
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Combinations of Analyses Optimizing testing by VALUE and WP (LTest)

Outline

Frama-C Overview

Formal Specification and Deductive Verification with WP

Value Analysis

Structural Unit Testing with PathCrawler

Runtime Verification with E-ACSL

Combinations of Analyses
Detecting runtime errors by static analysis and testing (SANTE)
Deductive verification assisted by testing (STADY)
Optimizing testing by value analysis and weakest precondition (LTest)

Conclusion
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Combinations of Analyses Optimizing testing by VALUE and WP (LTest)

Context: white-box testing

I Generate a test input

I Run it and check for errors

I Estimate coverage: if enough, then stop, else loop

Coverage criteria (decision, mcdc, mutants, etc.) play a major role

I generate tests, decide when to stop, assess quality of testing

The enemy: Uncoverable test objectives

I waste generation effort, imprecise coverage ratios

I cause: structural coverage criteria are ... structural

I detecting uncoverable test objectives is undecidable

Recognized as a hard and important issue in testing

I no practical solution, not so much work (compared to test gen.)

I real pain (e.g. aeronautics, mutation testing)
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Combinations of Analyses Optimizing testing by VALUE and WP (LTest)

LTest: Goals

We focus on white-box (structural) coverage criteria

Automatic detection of uncoverable test objectives

I a sound method

I applicable to a large class of coverage criteria

I strong detection power, reasonable speed

I rely as much as possible on existing verification methods

Note. The test objective
“reach location loc and satisfy
predicate p” is uncoverable

⇔ the assertion assert (¬p);
at location loc is valid
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Combinations of Analyses Optimizing testing by VALUE and WP (LTest)

Example: program with two uncoverable test objectives

int main() {

int a = nondet (0 .. 20);

int x = nondet (0 .. 1000);

return g(x,a);

}

int g(int x, int a) {

int res;

if(x+a >= x)

res = 1; // the only possible outcome

else

res = 0;

// l1: res == 0

// l2: res == 2

}
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Combinations of Analyses Optimizing testing by VALUE and WP (LTest)

Example: program with two valid assertions

int main() {

int a = nondet (0 .. 20);

int x = nondet (0 .. 1000);

return g(x,a);

}

int g(int x, int a) {

int res;

if(x+a >= x)

res = 1; // the only possible outcome

else

res = 0;

//@ assert res != 0

// both VALUE and WP fail

//@ assert res != 2

// detected as valid

}
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Combinations of Analyses Optimizing testing by VALUE and WP (LTest)

Example: program with two valid assertions

int main() {

int a = nondet (0 .. 20);

int x = nondet (0 .. 1000);

return g(x,a);

}

int g(int x, int a) {

int res;

if(x+a >= x)

res = 1; // the only possible outcome

else

res = 0;

//@ assert res != 0 // both VALUE and WP fail

//@ assert res != 2 // detected as valid

}
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Combinations of Analyses Optimizing testing by VALUE and WP (LTest)

LTest Methodology: Combine VALUE ⊕ WP

Goal: get the best of the two worlds

I Idea: VALUE passes to WP the global information that WP needs

Which information, and how to transfer it?

I VALUE computes variable domains

I WP naturally takes into account assumptions (assume)

Proposed solution:

I VALUE exports computed variable domains in the form of
WP-assumptions
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Combinations of Analyses Optimizing testing by VALUE and WP (LTest)

Example: alone, both VALUE and WP fail

int main() {

int a = nondet (0 .. 20);

int x = nondet (0 .. 1000);

return g(x,a);

}

int g(int x, int a) {

int res;

if(x+a >= x)

res = 1; // the only possible outcome

else

res = 0;

//@ assert res != 0 // both VALUE and WP fail

}
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Combinations of Analyses Optimizing testing by VALUE and WP (LTest)

Example: VALUE⊕WP

int main() {

int a = nondet (0 .. 20);

int x = nondet (0 .. 1000);

return g(x,a);

}

int g(int x, int a) {

//@ assume 0 <= a <= 20

//@ assume 0 <= x <= 1000 // VALUE inserts domains...

int res;

if(x+a >= x)

res = 1; // the only possible outcome

else

res = 0;

//@ assert res != 0

// ... and WP succeeds!

}
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Combinations of Analyses Optimizing testing by VALUE and WP (LTest)

LTest: Results and Experiments

I automatic, sound and generic method

I new combination of existing verification techniques
I experiments for 12 programs and 3 criteria (CC, MCC, WM):

I strong detection power (95%),
I reasonable detection speed (≤ 1s/obj.),
I test generation speedup (3.8x in average),
I more accurate coverage ratios (99.2% instead of 91.1% in average,

91.6% instead of 61.5% minimum)

[Bardin et al. ICST 2014, TAP 2014, ICST 2015]
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Conclusion
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Conclusion

Conclusion
We have presented how to:

I formally specify C code with ACSL

I prove programs with WP

I verify the absence of runtime errors with Value

I generate test cases with PathCrawler

I verify annotations at runtime with E-ACSL

I combine analyses in different ways

All of these and much more inside Frama-C

May be used for:

I teaching

I academic prototyping

I industrial applications

http://frama-c.com
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Conclusion

Some Industrial Applications
I Airbus & Atos: WP and home-made plug-ins for avionic applications
I EDF & Areva: Value for nuclear applications
I IRSN: WP for nuclear applications
I Bureau Veritas: normative activities and Frama-Clang
I TrustInSoft and their customers: Value and Frama-Clang for security

applications
I Dassault Aviation: home-made plug-ins + Value + Slicing + E-ACSL

for security counter-measures
I Mitsubishi Electric: experimenting PathCrawler
I ...
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