Frama-C
A Collaborative Framework for C Code Verification

Tutorial at RV 2016

Nikolai Kosmatov, Julien Signoles

Madrid, September 27th, 2016

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 1 /107

Outline

Frama-C Overview

Formal Specification and Deductive Verification with WP
Value Analysis

Structural Unit Testing with PathCrawler

Runtime Verification with E-ACSL

Combinations of Analyses

Conclusion

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 2 /107

Frama-C Overview

Outline

Frama-C Overview

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 3 /107

Frama-C Overview

Frama-C Historical Context

» 90's: CAVEAT, Hoare logic-based tool for C code at CEA

» 2000's: CAVEAT used by Airbus during certification process of the
A380 (DO-178 level A qualification)

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 4 /107

Frama-C Overview

Frama-C Historical Context

» 90's: CAVEAT, Hoare logic-based tool for C code at CEA

» 2000’s: CAVEAT used by Airbus during certification process of the
A380 (DO-178 level A qualification)

» 2002: Why and its C front-end Caduceus (at INRIA)

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 4 /107

Frama-C Overview

Frama-C Historical Context

» 90's: CAVEAT, Hoare logic-based tool for C code at CEA

» 2000’s: CAVEAT used by Airbus during certification process of the
A380 (DO-178 level A qualification)

» 2002: Why and its C front-end Caduceus (at INRIA)

» 2004: start of Frama-C project as a successor to CAVEAT and
Caduceus

» 2008: First public release of Frama-C (Hydrogen)

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 4 /107

Frama-C Overview

Frama-C Historical Context
» 90's: CAVEAT, Hoare logic-based tool for C code at CEA

|

v

vy V. v v v Y

2000's: CAVEAT used by Airbus during certification process of the

A380 (DO-178 level A qualification)

2002:
2004:

Why and its C front-end Caduceus (at INRIA)
start of Frama-C project as a successor to CAVEAT and

Caduceus

2008:
2012:
2012:
2013:
2016:
2016:

First public release of Frama-C (Hydrogen)
WP: Weakest-precondition based plugin
E-ACSL: Runtime Verification plugin

CEA Spin-off TrustInSoft

Eva: Evolved Value Analysis

Frama-Clang: C++ extension

Today: Frama-C Aluminium (v.13)
Upcoming: Frama-C Silicium (v.14, expected in November)

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27

4 /107

Frama-C Overview

Frama-C Open Source Distribution

Framework for analyses of source code written in ISO 99 C
[Kirchner & al @FAC'15]

v

analyze C+4+ code extended with ACSL annotations

ACSL

» ISO/ANSI C Specification Language
» langua franca of analyzers

v

v

almost open source (LGPL 2.1)
http://frama-c.com

v

also proprietary extensions and distributions

v

targets both academic and industrial usage

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 5 /107

Frama-C Overview

Example: a C program annotated in ACSL

/*@ requires n>=0 && \valid (t+(0..n—1));
assigns \nothing;

ensures \result = 0 <—>
(\forall integer j; 0<=j < n=>1t[j] = 0);
*/
int all_zeros(int t[], int n) {
int k;
/+*@ loop invariant 0 <= k <= n;
loop invariant \forall integer j; O<=j<k => t[]]==0;
loop assigns k;
loop variant n—k;
*/

for(k = 0; k < n; k++)
if (t[k] !'= 0)

return O;
) return 1; Can be proven
with Frama-C/WP _|
N. Kosmatov, J. Signoles (CEA LIST) Frama-C

2016-09-27 6 /107

Frama-C Overview

Frama-C, a Collection of Tools

Several tools inside a single platform

> plug-in architecture a /a Eclipse [S. OF-IDE'15]

» tools provided as plug-ins
» 21 plug-ins in the open source distribution
» outside open source plug-ins (E-ACSL & Frama-Clang, a few others)

» close source plug-ins, either at CEA (about 20) or outside

» plug-ins connected to a kernel

» provides an uniform setting
> provides general services

» synthesizes useful information

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 7 /107

Frama-C Overview
Plug-in Gallery

) presented in this talk
(O some words in this talk
Sparecode

Code Transformation

Semantic constant folding

N. Kosmatov, J. Signoles (CEA LIST)

Frama-C

[m] = = =

DAy
2016-09-27 8 /107

Frama-C Overview

Frama-C, a Development Platform

» developed in OCaml (~ 180 kloc in the open source distribution,
~ 300 kloc with proprietary extensions)

» was based on Cil [Necula & al @CC'02]

» library dedicated to analysis of C code

development of plug-ins by third party

» powerful low-cost analyser
> dedicated plug-in for specific task (verifying your coding rules)
» dedicated plug-in for fine-grain parameterization

> extension of existing analysers

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 9 /107

Formal Specification and Deductive Verification with WP

Outline

Formal Specification and Deductive Verification with WP
Overview of ACSL and WP
Function contracts
Programs with loops
My proof fails... What to do?

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 10 / 107

Formal Specification and Deductive Verification with WP

Goal

In this part, we will see
» how to specify a C program using ACSL

» how to prove it with an automatic tool using Frama-C/WP

» how to understand and fix proof failures

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27

11/ 107

Formal Specification and Deductive Verification with WP

Objectives of Deductive Verification

Rigorous, mathematical proof of semantic properties of a program
» functional properties

> safety:

> all memory accesses are valid,
» no arithmetic overflow,
» no division by zero, ...

» termination

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27

12 / 107

Formal Specification and Deductive Verification with WP Overview of ACSL and WP

Outline

Formal Specification and Deductive Verification with WP
Overview of ACSL and WP

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 13 / 107

Formal Specification and Deductive Verification with WP Overview of ACSL and WP

ACSL: ANSI/ISO C Specification Language

Presentation

v

Based on the notion of contract, like in Eiffel, JML

v

Allows users to specify functional properties of programs

\4

Allows communication between various plugins

\4

Independent from a particular analysis

v

Manual at http://frama-c.com/acsl
Basic Components

» Typed first-order logic

» Pure C expressions

» C types + Z (integer) and R (real)

» Built-ins predicates and logic functions, particularly over pointers:
\valid(p), \valid(p+0..2), \separated(p+0..2,9+0..5),
\block_length(p)

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 14 / 107

http://frama-c.com/acsl

Formal Specification and Deductive Verification with WP Overview of ACSL and WP

WP plugin

» Hoare-logic based plugin, developed at CEA List
» Proof of semantic properties of the program

» Modular verification (function by function)

» Input: a program and its specification in ACSL
» WP generates verification conditions (VCs)

» Relies on Automatic Theorem Provers to discharge the VCs
> Alt-Ergo, Simplify, Z3, Yices, CVC3, CVC4 . ..
» WP manual at http://frama-c.com/wp.html

» If all VCs are proved, the program respects the given specification
» Does it mean that the program is correct?

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 15 / 107

http://frama-c.com/wp.html

Formal Specification and Deductive Verification with WP Overview of ACSL and WP

WP plugin

» Hoare-logic based plugin, developed at CEA List
» Proof of semantic properties of the program

» Modular verification (function by function)

» Input: a program and its specification in ACSL
» WP generates verification conditions (VCs)

» Relies on Automatic Theorem Provers to discharge the VCs
> Alt-Ergo, Simplify, Z3, Yices, CVC3, CVC4 . ..
» WP manual at http://frama-c.com/wp.html

» If all VCs are proved, the program respects the given specification

» Does it mean that the program is correct?
» NO! If the specification is wrong, the program can be wrong!

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 15 / 107

http://frama-c.com/wp.html

Formal Specification and Deductive Verification with WP Function contracts

Outline

Formal Specification and Deductive Verification with WP

Function contracts

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 16 / 107

Formal Specification and Deductive Verification with WP Function contracts

Contracts

v

Goal: specification of imperative functions

v

Approach: give assertions (i.e. properties) about the functions

» Precondition is supposed to be true on entry (ensured by the caller)
» Postcondition must be true on exit (ensured by the function)

v

Nothing is guaranteed when the precondition is not satisfied

» Termination may be guaranteed or not (total or partial correctness)

Primary role of contracts
» Must reflect the informal specification

» Should not be modified just to suit the verification tasks

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 17 / 107

Formal Specification and Deductive Verification with WP Function contracts

Example 1

Specify and prove the following program:

// returns the absolute value of x
int abs (int x) {
if (x >=0)
return x ;

return -Xx

b

Try to prove with Frama-C/WP using the basic command

» frama-c-gui -wp file.c

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27

18 / 107

Formal Specification and Deductive Verification with WP Function contracts

Example 1 (Continued)

The basic proof succeeds for the following program:

/*@ ensures (x >= 0 ==>
(x < 0 ==> \result == -x);
*/
int abs (int x) {
if (x >=0)
return x ;

return -Xx

b

» The returned value is not always as expected.

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27

19 / 107

Formal Specification and Deductive Verification with WP Function contracts

Example 1 (Continued)

The basic proof succeeds for the following program:

/*@ ensures (x >= 0 ==>
(x < 0 ==> \result == -x);
*/
int abs (int x) {
if (x >=0)
return x ;

return -Xx

b

» The returned value is not always as expected.

» For x=INT_MIN, -x cannot be represented by an int and overflows
» Example: on 32-bit, INT_MIN= —23! while INT_MAX= 23! —1
N. Kosmatov, J. Signoles (CEA LIST)

Frama-C 2016-09-27 19 / 107

Formal Specification and Deductive Verification with WP Function contracts

Safety warnings: arithmetic overflows

Absence of arithmetic overflows can be important to check
» A sad example: crash of Ariane 5 in 1996

WP can automatically check the absence of runtime errors
» Use the command frama-c-gui -wp -wp-rte file.c
» |t generates VCs to ensure that runtime errors do not occur

> in particular, arithmetic operations do not overflow
» If not proved, an error may occur.

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 20 / 107

Formal Specification and Deductive Verification with WP Function contracts

Example 1 (Continued) - Solution

This is the completely specified program:

#include<limits.h>
/*@ requires x > INT_MIN;
ensures (x >= 0 ==> \result == x) &&
(x < 0 ==> \result == -x);
assigns \nothing;
*/
int abs (int x) {
if (x >0)
return x
return -x

I

b

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27

21 / 107

Formal Specification and Deductive Verification with WP Function contracts

Example 2

Specify and prove the following program:

// returns the maximum of x and y
int max (int x, int y) {
if (x >=y)
return x
return y

b

b

}

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 22 /107

Formal Specification and Deductive Verification with WP Function contracts

Example 2 (Continued) - Find the error

The following program is proved. Do you see any error?

/*@ ensures \result >= x && \result >= y;
*/
int max (int x, int y) {
if (x >=y)
return x ;
return y ;

}

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 23 /107

Formal Specification and Deductive Verification with WP Function contracts

Example 2 (Continued) - a wrong version

This is a wrong implementation that is also proved. Why?

#include<limits.h>
/*@ ensures \result >= x && \result >= y;
*/
int max (int x, int y) {
return INT_MAX

b

}

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 24 /107

Formal Specification and Deductive Verification with WP Function contracts

Example 2 (Continued) - a wrong version

This is a wrong implementation that is also proved. Why?

#include<limits.h>
/*@ ensures \result >= x && \result >= y;
*/
int max (int x, int y) {
return INT_MAX

b

}

» Our specification is incomplete

» Should say that the returned value is one of the arguments

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 24 /107

Formal Specification and Deductive Verification with WP Function contracts

Example 2 (Continued) - Solution

This is the completely specified program:

/*Q@ ensures \result >= x && \result

>= vy,
ensures \result == x || \result == y;
assigns \nothing;
*/
int max (int x, int y) {
if (x >=y)
return x ;
return y ;
}
N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 25 /107

Formal Specification and Deductive Verification with WP Function contracts

Example 3

Specify and prove the following program:

// returns the maximum of *p and *q
int max_ptr (int *p, int *q) {
if (*p >= xq)
return *p
return *q

I

b

}

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 26 / 107

Formal Specification and Deductive Verification with WP

Function contracts

Example 3 (Continued) - Explain the proof failure

Explain the proof failure with the option -wp-rte for the program:

/*@ ensures \result

>=

*p && \result >= x*q;
ensures \result == *p || \result == xq;
*/
int max_ptr (int *p, int *q) {
if (*p >= *q)
return *p ;
return *q ;
}
N. Kosmatov, J. Signoles (CEA LIST)

Frama-C

2016-09-27

27 / 107

Formal Specification and Deductive Verification with WP Function contracts

Example 3 (Continued) - Explain the proof failure

Explain the proof failure with the option -wp-rte for the program:

/*@ ensures \result >= *p && \result >= *q;

ensures \result == *p || \result == xq;
*/
int max_ptr (int *p, int *q) {
if (*p >= xq)
return *p
return *q

3

)

}

» Nothing ensures that pointers p, q are valid

» It must be ensured either by the function, or by its precondition

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27

27 / 107

Formal Specification and Deductive Verification with WP Function contracts

Safety warnings: invalid memory accesses

An invalid pointer or array access may result in a segmentation fault or
memory corruption.
» WP can automatically generate VCs to check memory access validity
> use the command frama-c-gui -wp -wp-rte file.c
» They ensure that each pointer (array) access has a valid offset (index)

> If the function assumes that an input pointer is valid, it must be
stated in its precondition, e.g.

» \valid(p) for one pointer p
» \valid(p+0..2) for a range of offsets p, p+1, p+2

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 28 / 107

Formal Specification and Deductive Verification with WP Function contracts

Example 3 (Continued) - Find

the error

The following program is proved. Do you see any error?

/*@ requires \valid(p) &&
ensures \result >= x*p

\valid(q);

&& \result >= x*q;
ensures \result == *p || \result == xq;
*/
int max_ptr (int *p, int *q) {
if (*p >= xq)
return *p ;
return *q ;
}
N. Kosmatov, J. Signoles (CEA LIST) Frama-C

2016-09-27

29 / 107

Formal Specification and Deductive Verification with WP

Function contracts

Example 3 (Continued) - a wrong version

This is a wrong implementation that is also proved. Why?

/*@ requires \valid(p) && \valid(q);
ensures \result >= xp && \result >= *q;
ensures \result == xp || \result == *q;

*/

int max_ptr (int *p, int *q) {

*p = 0;
*q = 0;
return 0O ;
}
N. Kosmatov, J. Signoles (CEA LIST) Frama-C

2016-09-27

30 / 107

Formal Specification and Deductive Verification with WP Function contracts

Example 3 (Continued) - a wrong version

This is a wrong implementation that is also proved. Why?

/*@ requires \valid(p) && \valid(q);
ensures \result >= *p && \result >= xq;
ensures \result == *p || \result == xq;

*/

int max_ptr (int *p, int *q) {

*p = 0;
*q = 0;
return 0O ;

}

» Our specification is incomplete

» Should say that the function cannot modify *p and *q

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27

30 / 107

Formal Specification and Deductive Verification with WP Function contracts

Assigns clause

The clause assigns v1, v2, ... , vN;
» Part of the postcondition
» Specifies which (non local) variables can be modified by the function
» Avoids to state for all unchanged global variables v:
ensures \old(v) == v;
» Avoids to forget one of them: explicit permission is required
» If nothing can be modified, specify assigns \nothing

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27

31/ 107

Formal Specification and Deductive Verification with WP Function contracts

Example 3 (Continued) - Solution

This is the completely specified program:

/*@ requires \valid(p) && \valid(q);

ensures \result >= xp && \result >= *q;
ensures \result == *p || \result == xq;
assigns \nothing;
* /
int max_ptr (int *p, int *q) {
if (*p >= *q)
return *p ;
return *q ;
}
N. Kosmatov, J. Signoles (CEA LIST) Frama-C

2016-09-27

32 /107

Formal Specification and Deductive Verification with WP Function contracts

Behaviors

Specification by cases
» Global precondition (requires) applies to all cases

» Global postcondition (ensures, assigns) applies to all cases

» Behaviors define contracts (refine global contract) in particular cases
» For each case (each behavior)
» the subdomain is defined by assumes clause
> the behavior’s precondition is defined by requires clauses
> it is supposed to be true whenever assumes condition is true
» the behavior’s postcondition is defined by ensures, assigns clauses
> it must be ensured whenever assumes condition is true
> complete behaviors states that given behaviors cover all cases
» disjoint behaviors states that given behaviors do not overlap

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 33 /107

Formal Specification and Deductive Verification with WP Function contracts

Example 4

Specify using behaviors and prove the function abs:

// returns the absolute value of x
int abs (int x) {
if (x >=0)
return x
return -Xx

b

b

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 34 /107

Formal Specification and Deductive Verification with WP Function contracts

Example 4 (Continued) - Solution

#include<limits .h>
/*@ requires x > INT_MIN;
assigns \nothing;
behavior pos:
assumes x >= 0;
ensures \result — x;
behavior neg:
assumes x < 0;
ensures \result — —x;
complete behaviors;
disjoint behaviors;
*/
int abs (int x) {
if ((x>=0)
return x ;
return —x ;

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 35 /107

Formal Specification and Deductive Verification with WP Function contracts

Contracts and function calls

// Prey assumed

f(<args>) {
codel;

// Preg to be proved
g(<args>);

// Postg assumed
code?2;

}
// Posty to be proved

Pre/post of the caller and of the callee have dual roles in the caller's proof
» Pre of the caller is assumed, Post of the caller must be ensured

» Pre of the callee must be ensured, Post of the callee is assumed

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 36 / 107

Formal Specification and Deductive Verification with WP Function contracts

Example 5

Specify and prove the function max_abs

int abs (int x);
int max (int x, int y);

// returns maximum of absolute values of x and y
int max_abs(int x, int y) {

x=abs (x) ;

y=abs (y);

return max(x,y);

}

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 37 / 107

Formal Specification and Deductive Verification with WP Function contracts

Example 5 (Continued) - Explain the proof failure for

#include<limits .h>
/*@ requires x > INT_MIN;
ensures (x >= 0 => \result = x) &&
(x < 0 = \result = —x);
assigns \nothing; x/
int abs (int x);

/%@ ensures \result >= x && \result >= y;
ensures \result =— x || \result = y;
assigns \nothing; x/

int max (int x, int y);

/*@ ensures \result >= x && \result >= —x &&
\result >=y && \result >= —y;
ensures \result = x || \result = —x ||
\result = vy || \result = —y;
assigns \nothing; x/
int max_abs(int x, int y) {
x=abs(x);
y=abs(y);
return max(x,y);

}

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 38 / 107

Formal Specification and Deductive Verification with WP Function contracts

Example 5 (Continued) - Explain the proof failure for

#include<limits .h>
/@ requires x > INT_MIN;
ensures (x >= 0 ==> \result = x) &&
(x < 0 = \result = —x);
assigns \nothing; x/
int abs (int x);

/%@ ensures \result >= x && \result >= y;
assigns \nothing; x/
int max (int x, int y);

/@ requires x > INT_MIN;
requires y > INT_MIN;
ensures \result >= x && \result >= —x &&
\result >=y && \result >= —y;
ensures \result = x || \result = —x ||
\result = vy || \result = —y;
assigns \nothing; x/
int max_abs(int x, int y) {
x=abs(x);
y=abs(y);
return max(x,y);

}

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27

39 / 107

Formal Specification and Deductive Verification with WP Function contracts

Example 5 (Continued) - Solution

#include<limits .h>
/@ requires x > INT_MIN;

ensures (x >= 0 ==> \result = x) &&

(x < 0 = \result = —x);
assigns \nothing; x/
int abs (int x);

/%@ ensures \result >= x && \result >=
ensures \result = x || \result =
assigns \nothing; x/

int max (int x, int y);

/%@ requires x > INT_MIN;
requires y > INT_MIN;
ensures \result >= x && \result >=
\result >=y && \result >= —y;
ensures \result = x || \result =
\result = vy || \result = —y;
assigns \nothing; x/
int max.abs(int x, int y) {
x=abs(x);
y=abs(y);
return max(x,y);

N} Kosmatov, J. Signoles (CEA LIST) Frama-C

Yy,
Yy

—X

2016-09-27

40 / 10

r

Formal Specification and Deductive Verification with WP Programs with loops

Outline

Formal Specification and Deductive Verification with WP

Programs with loops

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 41 / 107

Formal Specification and Deductive Verification with WP Programs with loops

Loops and automatic proof

v

What is the issue with loops? Unknown, variable number of iterations

v

The only possible way to handle loops: proof by induction

v

Induction needs a suitable inductive property, that is proved to be

» satisfied just before the loop, and
» satisfied after k + 1 iterations whenever it is satisfied after k > 0
iterations

\4

Such inductive property is called loop invariant

v

The verification conditions for a loop invariant include two parts

> loop invariant initially holds
> loop invariant is preserved by any iteration

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 42 /107

Formal Specification and Deductive Verification with WP Programs with loops

Loop invariants - some hints

How to find a suitable loop invariant? Consider two aspects:
> identify variables modified in the loop
> variable number of iterations prevents from deducing their values
(relationships with other variables)
» define their possible value intervals (relationships) after k iterations
> use loop assigns clause to list variables that (might) have been
assigned so far after k iterations
» identify realized actions, or properties already ensured by the loop

» what part of the job already realized after k iterations?

» what part of the expected loop results already ensured after k
iterations?

» why the next iteration can proceed as it does? ...

A stronger property on each iteration may be required to prove the final
result of the loop

Some experience may be necessary to find appropriate loop invariants

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 43 / 107

Formal Specification and Deductive Verification with WP Programs with loops

Loop invariants - more hints

Remember: a loop invariant must be true
» before (the first iteration of) the loop, even if no iteration is possible
» after any complete iteration even if no more iterations are possible

> in other words, any time before the loop condition check

In particular, a for loop

for(i=0; i<n; i++) { /% body %/ }

should be seen as

i =0; // action before the first iteration
while(i<n) // an iteration starts by the condition check

{

/* body x/
i++; // last action in an iteration
N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 44 /107

Formal Specification and Deductive Verification with WP Programs with loops

Loop termination

v

Program termination is undecidable

A tool cannot deduce neither the exact number of iterations, nor even
an upper bound

v

If an upper bound is given, a tool can check it by induction

v

An upper bound on the number of remaining loop iterations is the key
idea behind the loop variant

v

Terminology
» Partial correctness: if the function terminates, it respects its
specification
» Total correctness: the function terminates, and it respects its
specification

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 45 / 107

Formal Specification and Deductive Verification with WP Programs with loops

Loop variants - some hints

» Unlike an invariant, a loop variant is an integer expression, not a
predicate
» Loop variant is not unique: if V works, V + 1 works as well
» No need to find a precise bound, any working loop variant is OK
» To find a variant, look at the loop condition
> For the loop while(expl > exp2), try loop variant expl-exp2;

» In more complex cases: ask yourself why the loop terminates, and try
to give an integer upper bound on the number of remaining loop
iterations

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 46 / 107

Formal Specification and Deductive Verification with WP Programs with loops

Example 6

Specify and prove the function all_zeros

// returns a non-zero value iff all elements
// in a given array t of n integers are =zeros
int all_zeros(int t[], int n) {

int k;
for(k = 0; k < n; k++)
if (t[k] '= 0)

return O;
return 1;

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27

47 / 107

Formal Specification and Deductive Verification with WP Programs with loops

Example 6 (Continued) - Solution

/+*@ requires n>=0 && \valid(t+(0..n—1));
assigns \nothing;

ensures \result = 0 <=—>
(\forall integer j; 0 <= j < n=>t[]] = 0);
y
int all_zeros(int t[], int n) {
int k;

/*@ loop invariant 0 <= k <= n;

loop invariant \forall integer j; O<=j<k = t[j]==0;

loop assigns k;
loop variant n—k;

*/
for(k = 0; k < n; k++4)
if (t[k] !'= 0)
return O0;
return 1;

N. Kosmatov, J. Signoles (CEA LIST) Frama-C

48 / 107

Formal Specification and Deductive Verification with WP Programs with loops

Example 7

Specify and prove the function find_min:

// returns the index of the minimal element
// of the given array a of size length
int find_min(int* a, int length) {

int min, min_idx;

min_idx = O0;

min = al[0];

for (int i = 1; i<length; i++) {

if (ali]l < min) {

min_idx = i;
min = ali];
return min_idx;
N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 49 /107

Formal Specification and Deductive Verification with WP Programs with loops

Example 7 (Continued) - Solution

/*@ requires length > 0 && \valid(a+(0..length —1));
assigns \nothing;
ensures O<=\result<length &&
(\forall integer j; O<=j<length ==> a[\result]l<=a[]]);*/
int find_min(intx a, int length) {
int min, min_idx;

min_idx = 0;
min = a[0];
/%@ loop invariant O<=i<=length && O<=min_idx<length;
loop invariant \forall integer j; 0<=j<i = min<=alj];

loop invariant a[min_idx]==min;
loop assigns min, min_idx, i;

loop variant length — i; %/
for (int i = 1; i<length; i++4) {
if (a[i] < min) {
min_idx = i;
min = ali];

return min_idx;
N} Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 50 / 10

Formal Specification and Deductive Verification with WP My proof fails... What to do?

Outline

Formal Specification and Deductive Verification with WP

My proof fails... What to do?

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 51 / 107

Formal Specification and Deductive Verification with WP My proof fails... What to do?

Proof failures

A proof of a VC for some annotation can fail for various reasons:

» incorrect implementation (— check your code)
» incorrect annotation (— check your spec)
> missing or erroneous (previous) annotation (— check your spec)
» insufficient timeout (— try longer timeout)

» complex property that automatic provers cannot handle.

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 52 /107

Formal Specification and Deductive Verification with WP My proof fails... What to do?

Analysis of proof failures

When a proof failure is due to the specification, the erroneous annotation
may be not obvious to find. For example:

» proof of a “loop invariant preserved”’ may fail in case of

>

>
>
>
>

incorrect loop invariant

incorrect loop invariant in a previous, or inner, or outer loop
missing assumes or loop assumes clause

too weak precondition

» proof of a postcondition may fail in case of

>

>
>
>
>

N. Kosmatov, J.

incorrect loop invariant (too weak, too strong, or inappropriate)
missing assumes or loop assumes clause

inappropriate postcondition in a called function

too weak precondition

Signoles (CEA LIST) Frama-C 2016-09-27

53 / 107

Formal Specification and Deductive Verification with WP My proof fails... What to do?

Analysis of proof failures (Continued)

» Additional statements (assert, lemma, ...) may help the prover

» They can be provable by the same (or another) prover or checked
elsewhere

» Separating independent properties (e.g. in separate, non disjoint
behaviors) may help

» The prover may get lost with a bigger set of hypotheses (some of
which are irrelevant)

When nothing else helps to finish the proof:
> an interactive proof assistant can be used

» Coq, Isabelle, PVS, are not that scary: we may need only a small
portion of the underlying theory

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 54 / 107

Value Analysis

Outline

Value Analysis
Value
Eva
Derived analyses

N. Kosmatov, J. Signoles (CEA LIST) Frama-C

2016-09-27

55 / 107

Value Analysis

Goal

In this part, we will see
» how Value Analysis works

» how evolved is the new reimplementation

» how useful are derived analyses

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27

56 / 107

Value Analysis Value

Value Analysis Overview

Domain of variations of variables of the program

» abstract interpretation

» automatic analysis

> correct over-approximation

» alarms for potential invalid operations

» alarms for potential invalid ACSL annotations
» ensures the absence of runtime errors

» graphical interface: display the domain of each variable at each
program point

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 57 / 107

Value Analysis Value

Value Historical Domains

» One hard-wired non-relation domain

>

>

>

>

>

small sets of integers, e.g. {5, 18,42}
reduced product of intervals: quick to compute, e.g. [1..41]

modulo: pretty good for arrays of structures, e.g. [1..41],1%2

precise representation of pointers, e.g. 32-bit aligned offset from &t[0]

initialization information

» ad-hoc trace partitioning

» alarms on potential RTE and invalid annotations

» highly optimized

» excellent results on embedded code

>

possible usage in low-level C code

demo

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27

58 / 107

Value Analysis Value

Value Parameterization

» Value is automatic
» but requires fine-tuned parameterization to be precise/efficient
» trade-off between time efficiency vs memory efficiency vs precision
» stubbing: main function and missing library function
» either provide C code or ACSL specification (usually, assigns)
> similar to testing
> lots of parameters, but a few almost always useful

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 59 / 107

Value Analysis Value

Value Parameterization
Cont'd

» slevel n: superpose up to n states during the analysis

int main(void) {
int t[10];
for(int i = 0; 1 < 10; i++) t[i] = 1i;

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 60 / 107

Value Analysis Value

Value Parameterization
Cont'd

> slevel n: superpose up to n states during the analysis

int main(void) {

int t[10];

for(int i = 0; i < 10; i++) t[i] = 1i;
}

» case splitting through ACSL disjunctions

int gcd(int x, int y) {
int a = x, b = y;
while(b!=0) {
int tmp = a % b;
a = b; b = tmp;
}

return a;

3

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 60 / 107

Value Analysis Value

Value Parameterization
Cont'd
» slevel n: superpose up to n states during the analysis

int main(void) {

int t[10];

for(int i = 0; i < 10; i++) t[i]l = 1i;
}

» case splitting through ACSL disjunctions

int gecd(int x, int y) A{
int a = x, b = y;
/*@ assert b < 0 || b == 0 || b > 0; */
while(b!=0) {
int tmp = a % b;
a = b; b = tmp;
/*@ assert b < 0 || b ==0 || b > 0; */
}

return a;

}

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 60 / 107

Value Analysis Eva

Eva, Evolved Value Analysis

Major reimplementation in Frama-C Aluminium

» 100% compatible
» generic analysis on the abstract domain

» allow combination of abstract domains and some inter-reductions of
their states

» comparable analysis time for better results

» should be easy to add new domain

» Apron
» conditional predicates [Blazy, Biihler & Yakobowski @SCP'16]

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 61 / 107

Value Analysis Eva

Eva Domains
the new design relies on the separation between:

» values

» abstraction of the possible C values of an expression
» abstract transformers for arithmetic operators on expressions

» communication interface for abstract domains

» domains

» abstraction of the set of reachable states at a program point
> abstract transformers of states through statements
» can be queried for the values of some C expressions

» everyone can implement new domains easily

D. Bihler's PhD works

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 62 / 107

Value Analysis Derived analyses

Derived analyses

» results from Value/Eva are useful for other plug-ins

» domains of variations
» aliasing information

» dependency information

» program dependency graph (PDG)
> slicing

> impact analysis

» domain specific analysis
» information flow analysis [Assaf & al @SEC'13]
» concurrency analysis

example

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27

63 / 107

Structural Unit Testing with PathCrawler

Outline

Structural Unit Testing with PathCrawler

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 64 / 107

Structural Unit Testing with PathCrawler

Goal

In this part, we will see
» how to generate test cases using Frama-C/PathCrawler,

» how to specify test parameters,

» how to specify an oracle.

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27

65 / 107

0 Outline

Structural testing: a brief introduction
PathCrawler tool

Test parameters

Oracle and program debugging

Structural test for other properties/purposes
Strengths and limits of structural testing
Bypassing the limits

NoabkwbdE

. PathCrawler

=

Qutline
list

2. PathCrawler tool

1. Structural testing: a brief introduction
3. Test parameters

4. Oracle and program debugging

5. Structural test for other properties/purposes

6. Strengths and limits of structural testing
7. Bypassing the limits

. PathCrawler

o>

eS® Structural vs. functional testing

’ Specification ‘4@

Functional: Specified properties funCFi-OnaI tests .activate
specified behaviour

Oracle

test results Implementation

verdictl

’ Specification Analysis

Structural: specified properties structural tests activate
implemented behaviour
Oracle
i test results Implementation
verdlctl

PathCrawler

eSS

Llist

Unit structural testing is useful

Manually created functional test cases do not cover all the code

Certain « functional » test cases can be missed

Certain parts of code can depend on implementation choices and
cannot be properly covered by the specification

Evaluation of structural coverage

Adding test cases to complete structural coverage

o>

eSS

Unit structural testing can be mandatory

Development, evaluation and certification standards

Common Criteria for IT Security Evaluation
DO-178B (avionics)
ECCS-E-ST-40C (space)
IEC/EN 61508 (Electronic Safety-related Systems) & derived standards:
+ SO 26262 (automotive)
+ |EC/EN 50128 (rail)
+ IEC/EN 60601 (medical)
+ EC/EN 61513 (nuclear)
+ |IEC/EN 60880 (nuclear safety-critical)
+ |EC/EN 61511 (process e.g. petrochemical, pharmaceutical)

PathCrawler

[m] [l = = = o>

eSP CFG and code coverage by example

C code control-flow graph (CFG) statement coverage
x<02Q 4 x<0
if(x < 0)) x=x+1 x=x+1
x=x+ 1; x!=1
if(x '= 1) x1=17¢ +
x = 2*%x; - X =2%x
branch coverage infeasible path all-path coverage

x<0
x=x+1
X ==

eSP Path predicate (path condition) by example

C code control-flow graph (CFG) path predicate

X<0?2Q 4 r
FSU TN
= ; +
if(x '= 1) x1=17¢ +
X = 2*%x; _ X =2%x
Xo<0 Axg+1#1
+
- infeasible path
&
- - unsatisfiable path
predicate

Xg>=0Nxy=1 Xg<ONXg+1=1
PathCrawler

ool WNR

eSS

Llist

Automated structural testing... Why?

Achieving desired test coverage manually is costly

Must be done again after any code modification

Infeasibility of a test objective can be difficult to show manually

Automated structural testing tools can be used
to reach the uncovered objectives,

to determine that some of them are unreachable,
with a low cost overhead

o>

=

Qutline
Llist

2. PathCrawler tool

1. Structural testing: a brief introduction
3. Test parameters

4. Oracle and program debugging

5. Strengths and limits of structural testing

6. Structural test for other properties/purposes
7. Bypassing the limits

. PathCrawler

o>

eSS

PathCrawler tool
li:t.

Concolic testing tool for C developed at CEA LIST

Input: a complete compilable source code

Automatically creates test cases to cover

program paths
Uses code instrumentation, concrete and symbolic execution,
constraint solving

Exact semantics: don’t rely on concrete values to approximate
the path predicate

PathCrawler

Similar to PEX, DART/CUTE, KLEE, SAGE etc.

o>

G20 pathCrawler explores the tree of feasible paths

depth-first search with non-deterministic choice of suffix

testl: x=-5 Xo < 0 +2 x; #1 *+4
X; =X+ 1 Xy = 2%,

if(x < 0)
x=x+ 1;
if(x !'= 1)
X = 2*%x;

G20 pathCrawler explores the tree of feasible paths

depth-first search with non-deterministic choice of suffix

testl: x=-5 x, < 0 +2 X, #1—2 Xo<ON(Xo+ 1) #1
X; =X+ 1 Xy = 2%,

if(x < 0)
x=x+ 1;
if(x '=1)
x = 2*x;

13

G20 pathCrawler explores the tree of feasible paths

depth-first search with non-deterministic choice of suffix

testl: x=-5 x, < 0 ——2—> y, #1——2 X <ON(X+ D) #1
X; =X+ 1 \ Xy = 2%,
LA s X, <O (x,+1)=1 infeas.
if(x < 0)
x=x+ 1;
if(x '= 1)
x = 2*x;

G20 pathCrawler explores the tree of feasible paths

depth-first search with non-deterministic choice of suffix

testl: x=-5 x, < 0 +2 X, #1—2 Xo<ON(Xo+ 1) #1
X; =X+ 1 \ Xy = 2%,
LA s X, <O (x,+1)=1 infeas.
2 X020

if(x < 0)
x=x+ 1;
if(x '= 1)
x = 2*x;

G20 pathCrawler explores the tree of feasible paths

depth-first search with non-deterministic choice of suffix

testl: x=-5 x, < 0 +2 X, #1—2 Xo<ON(Xo+ 1) #1
X; =X+ 1 \ Xy = 2%,
R S Xo <0 (X +1) =1 infeas.
el -2 +4
test2: x=25 Xg # 1 Xg2 0N\ X, #1
X1 = 2X,
if(x < 0)
x=x+ 1;
if(x '= 1)
x = 2*x;

16

G20 pathCrawler explores the tree of feasible paths

depth-first search with non-deterministic choice of suffix

testl: x=-5 Xg < 0 *+2 X, #1 +4 Xg<ON(X+D#1
X; =X+ 1 \ Xy = 2%,
- SN Xo<ON(X,+1)=1 infeas.
test2: x=25 -2 Xg # 1 +4 Xg20AX, #1
X1 = 2X,
A4 Xg=O0AX, =1

PathCrawler

17

G20 pathCrawler explores the tree of feasible paths

depth-first search with non-deterministic choice of suffix

testl: x=-5 Xg < 0 *+2 X, #1 +4 Xg<ON(X+D#1
X; =X+ 1 \ Xy = 2%,
- SN Xo<ON(X,+1)=1 infeas.
. v — -2 +4
test2: x=25 Xg # 1 Xg20AX, #1
X1 = 2X,
test3: x=1 4 Xg=O0AX, =1

PathCrawler

18

eSS

Llist

pathcrawler-online.com

Instead of open-source or demonstration version

Teaching

No porting, no installation, universal user interface
Well adapted to
+ Use by project partners

Evaluation, understanding of Precondition and Oracle

Limited version (contact us for unlimited access)
During the tutorial

Browser: no cache recommended

* Do not start several test generation sessions in parallel
PathCrawler

e 6 o o o o o

Freely available test-case generation web service

19

o>

(20 Example 1. Robust implementation of Tritype

Simple program Tritype
* inputs: three floating-point numbers i, j, k

* returns the type of the triangle with sides i, j, k:
3 (not atriangle), 2 (equilateral), 1 (isosceles), 0 (other)

Robust : validity of inputs is tested (“not a triangle”)
= Any test case can be interesting and useful

“Test with predefined params” on pathcrawler-online.com
Observe the number of test cases. Check the results.

PathCrawler

20

eSP PathCrawler outputs

» A suite of test cases including
Input values (check these for Example 1)
Concrete outputs (check these for Example 1)
Symbolic outputs (better illustrated by Example 5)
Path predicate (better illustrated by Example 5)
Test driver
Oracle verdict (better illustrated by Example 10)

* Explored program paths with

their status (covered, infeasible, assume violated ...)
path predicate (only for covered paths in online version)

PathCrawler

21

=

list

Qutline

1. Structural testing: a brief introduction
2. PathCrawler tool

3. Test parameters

4. Oracle and program debugging
5. Strengths and limits of structural testing

6. Structural test for other properties/purposes
7. Bypassing the limits

. PathCrawler

22

o>

eSP Example 2. Non robust implementation of Tritype

No validity check lines 10-13, no “not a triangle” answer
= Are the test cases still interesting?

“Test with predefined params” on pathcrawler-online.com
Observe the number of test cases. Check the results.

Where is the problem?
Do we really want such input values in this case?

23

(20 Exercise 3. Customize test parameters for Tritype
How to generate appropriate test cases only ?
= define a precondition!

Exercise. Start from Example 2. “Customize test parameters”

- Restrict the domains of inputs i, j, k to non negative values:
[0..1.7976931348623157e+308]
- Add 3 unquantified preconditions:
i+j>k
jrk>i
i+k>j
- Confirm parameters and check the results.

PathCrawler

24

eSP Example 4. C Precondition for Tritype

Another way to define a precondition
= in a C function

Tritype_ precond returns 1 iff the precondition is verified

“Customize test parameters” on pathcrawler-online.com

to check that Pathcrawler has activated the C precondition.

Confirm & observe the number of test cases & results.

PathCrawler

25

eSP Test parameters

» Define admissible inputs (precondition)
Domains of input variables
Relations between variables...

* Wrong test parameters may
Indicate inexistent bugs (the bug is in the input)

Provoke runtime errors

26

eSP Example 5. Merge with default parameters

Merge of two sorted arrays t1, t2 into a sorted array t3
* inputs: arrays t1[3], t2[3], t3[6] of fixed size

“Test with predefined params” on pathcrawler-online.com
Check the concrete outputs.
What is wrong with the concrete outputs?

This example also illustrates well the information on array inputs,
symbolic outputs and path predicate included in a test-case

PathCrawler

27

eSP Exercise 6. Quantified precondition for Merge

If the input arrays t1 and t2 are not ordered, Merge does not work!

Exercise. Start from Example 5. “Customize test parameters”
- Add two quantified preconditions (INDEX is a reserved word):

for all INDEX
such that INDEX < 2
we have t1[INDEX]<=t1] INDEX+1]

for all INDEX
such that INDEX < 2
we have t2[INDEX]<=t2[INDEX+1]

- Confirm parameters and check the results.

Are the input arrays t1 and t2 sorted now? Is t3 sorted?

PathCrawler

eSP Example 7. Merge with pointer inputs

Merge of two sorted arrays t1, t2 into a sorted array t3

* inputs: arrays t1[1, t2[], t3[] of variable size,
11 the size of t1, 12 the size of £2, 11+12 the size of t3

* precondition t1, t2 ordered arrays predefined
* reduced domains of elements [-100,100] predefined

“Test with predefined params” on pathcrawler-online.com
Check the results.

Why are there errors?

29

eSP Exercise 8. Input arrays (pointers) size

t1, t2, £3 should contain resp. 11, 12, 11+12 allocated elements.
Wrong input array size => Runtime errors while executing tests!

Exercise. Start from Example 7. “Customize test parameters”
- Specify domains for dim(t1), dim(t2), dim(t3)
0<=dim(t3) <=6
0<=dim(t2) <=3
0<=dim(tl) <=3
- Add three unquantified preconditions:
dim(t1) == 11
dim(t2) == 11
dim(t3) ==11 + 12
- Confirm parameters and check the results.

Are there errors? Why? How many test cases are generated?

PathCrawler

eSP Partial test coverage : k-path criterion

* In presence of loops, all-path criterion
may generate too many test cases

« The user may want to limit their number

» k-path coverage restricts the all-path

criterion to paths with at most k
consecutive iterations of each loop
(k=0,1,2...)

. PathCrawler

31

G20 Exercise 9. Merge with partial test coverage: k-path

To reduce the number of test cases, modify test criterion.

Exercise. Continue Exercise 8 with the same test
parameters you defined. “Customize test parameters”

- Set “Path selection strategy” to 2 (for k-path with k=2)
- Confirm parameters and check the results.

How many test cases are generated now?

PathCrawler

32

=

Qutline
list

2. PathCrawler tool

1. Structural testing: a brief introduction
3. Test parameters

4. Oracle and program debugging
5. Strengths and limits of structural testing

6. Structural test for other properties/purposes
7. Bypassing the limits

. PathCrawler

o>

0 Oracle
List

Role of an oracle:
+ examines the inputs and outputs of each test

. deciclies whether the implementation has given the expected
results

» provides a verdict (success, failure)

An oracle can be provided by
» another, or previous implementation
» checking the results without implementing the algorithm

34

o>

eSS

Exercise 10a. Oracle and debugging
List

Start from Example 10a, “Customize test parameters” to
see an example of an oracle

Is this oracle complete ?

o>

eSS

Exercise 10b. Oracle and debugging
List

Start from Example 10b, “Customize test parameters” to
see another example of an oracle

Is this oracle complete ?

o>

(G20 Exercise 10c. Oracle and debugging

Start from Example 10a, “Customize test parameters” to
see the predefined oracle

Exercise. Confirm parameters and check the results.
Can you find an error in the implementation?

Hint: The paths of failed test cases have a common part...

37

=

Qutline
list

2. PathCrawler tool

1. Structural testing: a brief introduction
3. Test parameters

4. Oracle and program debugging

5. Structural test for other properties/purposes

6. Strengths and limits of structural testing
7. Bypassing the limits

. PathCrawler

o>

=

Structural test for other properties or purposes

PathCrawler explores the implementation and can also be used to check:

for runtime errors during program execution (seen in Ex.7)
for anomalies detected during analysis of the covered paths:
* uninitialised variables
* buffer overflow
* integer overflow
whether the implementation performs unnecessary computation

the effective execution time of each path (at least for one set of inputs),
by running the generated tests on a platform which can measure
execution time

for unreachable or “dead” code: check infeasible partial paths.

If all paths leading to the code are infeasible then the code is
unreachable (for the given precondition): is this intentional ?

PathCrawler

39

TC. 1

TC_2

—>0—>0——0 O TC_3

error during test execution or
anomaly detected by analysis

—O

@)

Runtime error or anomaly: search space is pruned

TC 1

TC_2

TC 3

TC 4

40

eSS

Example Uninit. Uninitialised variable
ist

In this example, the local variables are not always initialised
before their value is read. This is a typical “anomaly”:
probably a bug but does not cause a run-time error.

“Test with predefined parameters” and check the results.

Are there any errors or warnings? Why?

Are all feasible paths covered?

(S0 Example UC. Unnecessary computation

Bsearch is an implementation of dichotomic search
for value x in sorted array A.

“Customize test parameters” to see the predefined oracle
and parameters. Confirm them and check the results.

Examine the predicates and input values of the cases where
X is present. Is this an efficient implementation?

PathCrawler

42

=

Qutline
list

2. PathCrawler tool

1. Structural testing: a brief introduction
3. Test parameters

4. Oracle and program debugging

5. Structural test for other properties/purposes

6. Strengths and limits of structural testing
7. Bypassing the limits

. PathCrawler

o>

(20 Dichotomic search: structural vs. other strategies

Example: dichotomic search for a value int x in a sorted array int A[10].

Random testing: Unlikely to construct cases in which x equals one of the
elements of A and to detect false negatives (x not detected when present)

Functional testing: Constructs

* many cases in which x is present (probably from 1 to 10?) and

» fewer cases in which x is absent (1 or 2 ?)

Structural testing: Constructs a case

» for each position in A for which x can be detected and

» for each relation to elements of A for which absence of x is detected.
Structural test. constructs more presence cases than random, more absence
cases than functional, rarely constructs cases where X is present by chance.

PathCrawler

eSS

- .
|

Example Chance. Failures by chance?

Bsearch is another implementation of dichotomic search
for value x in sorted array A. It contains a bug which

can result in false positives (x present but not detected).

The parameters are the same as in the previous example.
Confirm them and check the results.

Is the presence or absence of x in A
always determined by the path predicate?

Hint: look at failing cases or those where x is present.
PathCrawler

(20 Example 11. Limitations of structural testing

Bsearch is another erroneous implementation of
dichotomic search for value x in sorted array A.

The parameters are the same as in the previous example.
Confirm them and check the results.

Are there any failures?

46

eSP Limitations of structural testing

Structural testing is
» effective when a bug is always revealed by a path,

* less so when only some of the values which activate
the path cause the bug to be revealed

PathCrawler chooses arbitrary values to test each path

They may not be the values which will reveal a bug

We can make PathCrawler go looking for bugs

by sub-dividing the paths

47

=

Qutline
Llist

2. PathCrawler tool

1. Structural testing: a brief introduction
3. Test parameters

4. Oracle and program debugging

5. Structural test for other properties/purposes

6. Strengths and limits of structural testing
7. Bypassing the limits

. PathCrawler

o>

eSP Cross-checking conformity with a specification

Xo<0 + +

X #1
X1 = Xgtl ! imp = 2x,
L

imp =X,

implementation

int £(int x) {
if(x < 0)
x=x+1;
if(x !'= 1)
x = 2*x;
return x; }

PathCrawler

49

€SS

Cross-checking conformity with a specification

Xo<0 x1:XD+1 X7t imp+: 2x,
Lbemeeee = >
Xorl imp+: 2X,
imp_:xo
implementation specification

int £(int x) {

if(x < 0) If x is less than [then

i’f‘(: ’!‘:1)1" the result should be 2(x + 1)

X = 2%x; else the result should be 2x

return x; }

PathCrawler

50

eSP Cross-checking conformity with a specification

Xo<0 + X, #1 —= X<l —EF———
Xp=Xgtl i imp = 2x, spec = 2(x,+1)
Lbemeeee = >
- + —
Xo#1 imp = 2%, spec = 2x,
imp =X,

implementation specification

int £(int x) { int spec_f(int x){

if(x < 0) if(x < 1)
x=x+ 1; X =2%(x + 1);
if(x '=1) else

x = 2*x; x = 2*x;
return x; } return x; }

PathCrawler

eSP Cross-checking conformity with a specification

X,<0 + x#l —= X<l —EF——— imp=spec +—=> 0K
X; = X+l :_ imp = 2x, spec = 2(x,+1)
———————— >
- XotL imp+: . spe_c “ox, = BUG
imp_:xo
implementation specification comparison
int f(int x) { int spec_f (int x){ int cross_f (int x){
if(x < 0) if(x < 1) int imp = f£(x);
XxX=x+1; X =2*%(x + 1); int spec=spec_f(x);
if(x '=1) else if (imp!=spec)
X = 2*%x; X = 2*%x; return O;
return x; } return x; } else return 1; }

PathCrawler

52

(20 cross-checking conformity with a specification

X,<0 o : oL Xyl imp+: vy Xo<1 m imp=spec =+ 0K
Lo >)]
- Xo#1 imp+: 2 spec = 2x, UG
imp-: Xo
X< + x#1 —

X; = X+l

- X<l —=
imp = 2x, spec = 2(x,+1)

spec = 2x
! int cross_f (int x){

int imp = f(x);

int spec=spec_f(x);

if (imp!=spec)
return O;

else return 1; }

53

(20 cross-checking conformity with a specification

X,<0 + X,#1 £ X<l —F—— imp=spec =+ 0K

X1 = X+l ! imp = 2x, P spec = 2(x,+1)
Lbemeeee = >
- + = = BUG
Xg#l imp = 2%, spec = 2x,
imp =X,

+ X #1 — Xp<l —=
X1 = X+l imp=2x;, 1 spec = 2(x,+1)
1
"""""" > Xo<ONXgt D#IAXy 21

%<0 X< ON(Xgt 1) #FIA X< — x,<0

int cross_f (int x){

int imp = f(x);

int spec=spec_f(x);

if (imp!=spec)
return O;

else return 1; }

54

(20 cross-checking conformity with a specification

X,<0 + X #1 + X<l —EF——— imp=spec =+ 0K
7 X1 = X+l |1¢ imp = 2x, 7 spec = 2(x,+1) pesp
Lemmeee=- >
_ + = = BUG
Xg#l imp = 2x, spec = 2x,
imp = x,
Xo<0 £ o X #1 — 5 X<l + S0t D) imp=spec——> OK
X1 =X imp = 2x spec = 2(x
1= Xp p 1 : p 0 > BUG

int cross_f (int x){

int imp = f(x);

int spec=spec_f(x);

if (imp!=spec)
return O;

else return 1; }

55

eSP Cross-checking conformity with a specification

%<0 + x,#1 + X<l —F——> imp=spec +—=> 0K
? X1 = X+l ! imp = 2x, P spec = 2(x,+1) pesp
Lbemeeee = >
+ = = BUG
Xg#l imp = 2%, spec = 2x,
imp =X,
Xo<0 + x#1 —= Xo<1 + imp=spec——=> 0K Xo< 0\ 2(Xo+1) = 2(xo+1)
X1 = X+l imp=2x;, 1 spec = 2(x,+1) 1
1

------- > BUG x,< 0 A 2(Xg+]) # 2(xp+1)

56

€SS

Cross-checking conformity with a specification

X¢<0 + X #1 + X<l —EF——— imp=spec —=—> OK
7 X1 = X+l ! imp = 2x, 7 spec = 2(x,+1) pesp
Lbemeeee = >
- + = = BUG
Xg#l imp = 2%, spec = 2x,
imp =x,
Xo<0 + X#1 + Xo<1 + imp=spec——> OK X, <
T X =Xt |1;e imp=2x, | spec=2(x,+1) R=sp 0<0
1 v 0T mmmm e > BUG
T T >
————————— >
Xo#l —= X<l + Xo=O0AXg# IAXg<1—x,=0
imp = 2x, spec = 2(x,+1)
\-—> X2 O0AXg# IAXg 21 — x> 1
spec = 2x,

57

(20 cross-checking conformity with a specification

X,<0 + X,#1 £ X<l —F—— imp=spec =+ 0K

X1 = X+l h imp = 2x, 0 spec = 2(x,+1)
Lbemeeee = >
- + = = BUG
Xg#l imp = 2%, spec = 2x,
imp = x,
Xo<0 £ o x#1 —+ 5 X<l + S0t D) imp=spec——> OK
X1 =X imp = 2x spec = 2(x
1= Xy ' P ! p 0 L > BUG
T T >
————————— >
. Xo= = 2(x+
Xo#1 = Xo<1 + imp=spec---> OK © 0N 2% =2(x;+1)

. _ 0 -
imp = 2x, spec = 2(x,+1) _ BUG Xo= 0/ 2, # 2(xo+1)
= imy?=specd'—> OK x;> 1\ 2%, =2,

spec = 2x,
Xo> 1N\ 2%, # 2x,

58

(20 cross-checking conformity with a specification

+ +

X¢<0 imp=spec +—=> 0K

X,#1 = X<l —EF——>
X1 =X+l 0 imp = 2x, spec = 2(x,+1)
Lbemeeee = >
= X + = = BUG

o#1 imp = 2x, spec = 2x,
imp = x,
Xo<0 + X#1 + Xo<1 + imp=spec——> OK X, <
T X =Xt f# imp=2x, | spec=2(x,+1) R=sp 0<0

1 v 0T mmmm e > BUG

T T >

- >

Xo#1 = imp=spec- - > OK

X<l =
imp = 2x, V spec = 2(x,+1) ~ BUG X%=0

imp=spec——> OK %> 1
1

spec=2x, v ______ > BUG
- = x0<1 -——
imp =x
P=% = imp=spec---> OK
spec = 2X,

—> BUG %=1

eSS

Example 12. Testing conformity with a specification

Spec_Bsearchis a specification for Bsearch, similar to
the oracle. Test function CompareBsearchSpec that
+ stores inputs, calls Bsearch,

+ calls spec_Bsearch to provide a verdict.

All-path testing will try cover all combinations of paths in
Bsearch and Spec_Bsearch.

PathCrawler

“Customize test parameters” to see the predefined oracle
Why are failures reported this time? Can you find the bug?

and parameters. Confirm them and check the results.

60
&

Runtime Verification with E-ACSL

Outline

Runtime Verification with E-ACSL
E-ACSL Specification Language
E-ACSL Plug-in

N. Kosmatov, J. Signoles (CEA LIST) Frama-C

2016-09-27

66 / 107

Runtime Verification with E-ACSL

Goal

In this part, we will see
» the differences between ACSL and E-ACSL

» how to check E-ACSL properties at runtime
» how static analyses improve efficiency of the monitor

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27

67 / 107

Runtime Verification with E-ACSL E-ACSL Specification Language

From ACSL to E-ACSL

v

ACSL was designed for static analysis tools only

v

based on logic and mathematics

» cannot execute any term/predicate (e.g. unbounded quantification)

v

cannot be used by dynamic analysis tools (e.g. testing or monitoring)

v

E-ACSL: executable subset of ACSL [Delahaye, K. & S. ORV'13]

» few restrictions

» one compatible semantics change

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 68 / 107

Runtime Verification with E-ACSL E-ACSL Specification Language

E-ACSL Restrictions

» quantifications must be guarded

\forall 71 Xi,..., Tn Xn;
a1 <= x3 <= by && ... && a, <= x, <= b,
==> p

\exists T4 X{,..., Tn Xn;
a1 <= x1 <= by && ... && a, <= x, <= b,
&& p

» sets must be finite
» no lemmas nor axiomatics

> no way to express termination properties

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 69 / 107

Runtime Verification with E-ACSL E-ACSL Specification Language

E-ACSL Integers

» mathematical integers to preserve ACSL semantics

» many advantages compared to bounded integers

>

N. Kosmatov, J.

automatic theorem provers work much better with such integers than
with bounded integers arithmetics

specify without implementation details in mind
still possible to use bounded integers when required

much easier to specify overflows

Signoles (CEA LIST) Frama-C 2016-09-27 70 / 107

Runtime Verification with E-ACSL E-ACSL Specification Language

Error in annotations?

» ACSL logic is total and 1/0 is logically significant

>

>

help the user to write simple specification like u/v == 2
1/0 is defined but not executable

» E-ACSL logic is 3-valued

>

N. Kosmatov, J.

the semantics of 1/0 is “undefined”
lazy operators &&, ||, _?_:_, ==>
Chalin’s Runtime Assertion Checking semantics

consistent with ACSL: valid (resp. invalid) E-ACSL predicates remain
valid (resp. invalid) in ACSL

evaluating an undefined term must not crash

Signoles (CEA LIST) Frama-C 2016-09-27 71 / 107

Runtime Verification with E-ACSL E-ACSL Plug-in

E-ACSL plug-in at a Glance

http://frama-c.com/eacsl.html

» convert E-ACSL annotations into C code

» implemented as a Frama-C plug-in

int div(int x, int y) { 18t div{int x, int y) A

/%@ assert y-1 != 0; %/ E-ACSL /*@ assert y-1 1= 0; x/
return x / (y-1); - e_acsl_assert(y-1 != 0);
} return x / (y-1);
}

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 72 / 107

http://frama-c.com/eacsl.html

Runtime Verification with E-ACSL E-ACSL Plug-in

E-ACSL plug-in at a Glance

http://frama-c.com/eacsl.html

» convert E-ACSL annotations into C code

» implemented as a Frama-C plug-in

int div(int x, int y) { 18t div{int x, int y) A

/%@ assert y-1 != 0; %/ E-ACSL /*@ assert y-1 1= 0; x/
return x / (y-1); - e_acsl_assert(y-1 != 0);

} return x / (y-1);
}
» the general translation is more complex than it may look

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 72 / 107

http://frama-c.com/eacsl.html

Runtime Verification with E-ACSL E-ACSL Plug-in

E-ACSL Integer Support

» use GMP library for mathematical integers

/*@ assert y-1 == 0; */
mpz_t e_acsl_1, e_acsl_2, e_acsl_3, e_acsl_4;
int e_acsl_5;

mpz_init_set_si(e_acsl_1, y); // eacsll =y
mpz_init_set_si(e_acsl_2, 1); // e_acsl2 =1
mpz_init(e_acsl_3);

mpz_sub(e_acsl_3, e_acsl_1, e_acsl_2); // eacsl3 = y-1
mpz_init_set_si(e_acsl_4, 0); // e_acsl 4 =0
e_acsl_5 = mpz.cmp(e_acsl_3, e_acsl_4); // (y-1) ==
e_acsl_assert(e_acsl_5 == 0); // runtime check

mpz_clear(e_acsl_1); mpz.clear(e_acsl_2); // deallocate
mpz_clear (e_acsl_3); mpz.clear(e_acsl_4);

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 73 / 107

Runtime Verification with E-ACSL E-ACSL Plug-in

E-ACSL Integer Support

» use GMP library for mathematical integers

/*@ assert y-1 == 0; */
mpz_t e_acsl_1, e_acsl_2, e_acsl_3, e_acsl_4;
int e_acsl_5;

mpz_init_set_si(e_acsl_1, y); // eacsll =y
mpz_init_set_si(e_acsl_2, 1); // e_acsl2 =1
mpz_init(e_acsl_3);

mpz_sub(e_acsl_3, e_acsl_1, e_acsl_2); // eacsl3 = y-1
mpz_init_set_si(e_acsl_4, 0); // e_acsl 4 =0
e_acsl_5 = mpz.cmp(e_acsl_3, e_acsl_4); // (y-1) ==
e_acsl_assert(e_acsl_5 == 0); // runtime check

mpz_clear(e_acsl_1); mpz.clear(e_acsl_2); // deallocate
mpz_clear (e_acsl_3); mpz.clear(e_acsl_4);

» how to restrict GMPs as most as possible? on-the-fly typing

almost no GMP in practice
[Jakobsson, K. & S. @JFLA'15]

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 73 / 107

Runtime Verification with E-ACSL E-ACSL Plug-in
E-ACSL RTE Detection

must prevent introducing RTE when translating annotations

int foo(int u, int v) {
/*@ assert u/v == 2; x/
return u/v;

}

Runtime Verification with E-ACSL E-ACSL Plug-in
E-ACSL RTE Detection

must prevent introducing RTE when translating annotations

int foo(int u, int v) { int foo(int u, int v) {
/%@ assert u/v == 2; */ p.acsL /*Q assert u/v == 2; */
return u/v; I e_acsl_assert(u/v == 2);
} return u/v;

}

Runtime Verification with E-ACSL E-ACSL Plug-in
E-ACSL RTE Detection

must prevent introducing RTE when translating annotations

int foo(int u, int v) { int foo(int u, int v) {
/%@ assert u/v == 2; */ p.acsL /*Q assert u/v == 2; */
return u/v; I e_acsl_assert(u/v == 2);
} return u/v;
}
JRTE plug-in
int foo(int u, int v) {
/*@ assert v != 0; *x/
/*Q@ assert u/v == 2; */
e_acsl_assert(u/v == 2);

return u/v;

Runtime Verification with E-ACSL E-ACSL Plug-in
E-ACSL RTE Detection

must prevent introducing RTE when translating annotations

int foo(int u, int v) { int foo(int u, int v) {
/%@ assert u/v == 2; */ p.acsL /*Q assert u/v == 2; */
return u/v; I e_acsl_assert(u/v == 2);
} return u/v;
}
JRTE plug-in
int foo(int u, int v) { int foo(int u, int v) {
/*Q@ assert v != 0; *x/ /*@ assert v != 0; *x/
e_acsl_assert(v !'= 0); /*@ assert u/v == 2; */
/*Q@ assert u/v == 2; %/ E-Aé—_C‘SL e_acsl_assert(u/v == 2);
e_acsl_assert(u/v == 2); return u/v;
return u/v; }
}

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 74 / 107

Runtime Verification with E-ACSL E-ACSL Plug-in

E-ACSL Memory Observation

» memory-related constructs like \valid, \initialized,
\block length, \base_addr, \offset require to know the memory
structure at runtime

» C library for memory observation

» Patricia-trie based implementation [K., Petiot & S. @SAC'13]

» New shadow-memory based implementation [with K. Vorobyov]

» once again the translation is quite heavy

» dataflow analysis to instrument the code only when required
» backward
> over-approximating

> parameterized by an alias analysis
» [Jakobsson, K. & S. @JFLA'15 & @SAC'15]

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 75 / 107

Runtime Verification with E-ACSL E-ACSL Plug-in

E-ACSL Memory Observation

void f(void) {
int x, y, z, *p;

N < X 'O
1]
N = O &

/%@ assert \valid(p); */

[
w

*Pp

}

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 76 / 107

Runtime Verification with E-ACSL E-ACSL Plug-in

E-ACSL Memory Observation

void f(void) {

}

int x, y, z, *p;
// allocations of local variables
__store_block((void *) (&p), 4U); __store_block((void *) (&z), 4U);
__store_block((void *)(&y), 4U); __store_block((void *) (&x), 4U);
_full_init((void *)(&p)); p = &x; // initialization of p
__full_init((void *)(&x)); x = 0; // initialization of x
_full_init((void *)(&y)); y = 1; // initialization of y
__full_init((void *)(&z)); =z // initialization of z
// validity check
/%@ assert \valid(p); */
{ int __e_acsl_initialized, __e_acsl_and;

__e_acsl_initialized = __initialized((void *) (&p),sizeof (int *));

if (__e_acsl_initialized) { int __e_acsl_valid;

__e_acsl_valid = _valid((void *)p, sizeof (int));
_—e_acsl_and = __e_acsl_valid;

} else __e_acsl.and = 0;

e_acsl.assert(__e_acsl.and); }
*p = 3;
// free allocated variables
__delete_block((void *)(&p)); --delete_block((void *) (&z));
__delete_block((void *) (&y)); __-delete_block((void *) (&x));

]
N

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27

76 / 107

Runtime Verification with E-ACSL E-ACSL Plug-in

E-ACSL Memory Observation

void f(void) {

}

int x, y, z, *p;
// allocations of local variables
__store_block((void *) (&p), 4U); __store block((void *) (&z), 4U);
__store_block((void *) (&y), 4U); __store_block((void =) (&x), 4U);
_full_init((void *)(&p)); p = &x; // initialization of p
__full_init((void %) (&x)); x 0; // initialization of x
_full_init((void *)(&y)); y = 1; // initialization of y
__full_init((void *) (&z)); z // initialization of z
// validity check
/%@ assert \valid(p); */
{ int __e_acsl_initialized, __e_acsl_and;

__e_acsl_initialized = __initialized((void *) (&p),sizeof (int *));

if (__e_acsl_initialized) { int __e_acsl_valid;

__e_acsl_valid = _valid((void *)p, sizeof(int));
__e_acsl_and = __e_acsl_valid;

} else __e_acsl.and = 0;

e_acsl.assert(__e_acsl.and); }
*p = 3;
// free allocated variables
—delete_block((void *)(&p)); _.delete block((void *)(&z));
_delete block((void *)(&y)); __.delete_block((void *)(&x));

|
N

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27

76 / 107

Runtime Verification with E-ACSL E-ACSL Plug-in

Possible Usage in Combination with Other Tools

» check unproved properties of static analyzers (e.g. Value, WP)
» check the absence of runtime error in combination with RTE
» check memory consumption and violations (use-after-free)

» help testing tools by checking properties which are not easy to
observe

» complement program transformation tools
» temporal properties (Aorai)

» information flow properties (SecureFlow)

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 77 / 107

Combinations of Analyses

Outline

Combinations of Analyses
Detecting runtime errors by static analysis and testing (SANTE)
Deductive verification assisted by testing (STADY)
Optimizing testing by value analysis and weakest precondition (LTest)

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 78 / 107

Combinations of Analyses

Goal

In this part, we

» describe some combinations of static and dynamic analyses,

> illustrate their implementation as plugins of Frama-C.

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 79 / 107

Combinations of Analyses Detecting runtime errors by static analysis and testing (SANTE)

Outline

Combinations of Analyses
Detecting runtime errors by static analysis and testing (SANTE)

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 80 / 107

Combinations of Analyses Detecting runtime errors by static analysis and testing (SANTE)

The C language is risky!

» Low-level operations
» Widely used for critical software

» Lack of security mechanisms

Runtime errors are common:

» Division by 0

v

Invalid array index

v

Invalid pointer
Non initialized variable
Out-of-bounds shifting

Arithmetical overflow

v

\4

\4

N. Kosmatov, J. Signoles (CEA LIST) Frama-C

THE

PROGRAMMING
LANGUAGE

Brian W. Kernighan ¢ Dennis M. Ritchie

PRENTICE HALL SOFTWARE SERIES

2016-09-27 81 / 107

Combinations of Analyses Detecting runtime errors by static analysis and testing (SANTE)

SANTE: Goals

Detection of runtime errors: two approaches

Static analysis Testing

Issue: leaves unconfirmed errors | Issue: cannot detect all errors if
that can be safe test coverage is partial

Goal: Combine both techniques to detect runtime errors more efficiently

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 82 / 107

Combinations of Analyses Detecting runtime errors by static analysis and testing (SANTE)

Plugin PathCrawler for test generation

Symbolic Execution

Executed path Constraints of the path to cover

; Test data -
Concrete Execution Constraint solver

» Performs Dynamic Symbolic Execution (DSE)

» Automatically creates test data to cover program paths (explored in
depth-first search, [Botella et al. AST 2009])

» Uses code instrumentation, concrete and symbolic execution,
constraint solving

» Exact semantics: doesn't approximate path constraints
» Similar to PEX, DART/CUTE, KLEE, SAGE, etc.

» Online version: pathcrawler-online.com

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 83 / 107

pathcrawler-online.com

Combinations of Analyses Detecting runtime errors by static analysis and testing (SANTE)

Plugin “VALUE" for value analysis

i
wa a

{
\>\ oy(a)

Based on abstract interpretation [Cousot, POPL 1977]

v

Computes an overapproximation of sets of possible values of variables
at each instruction

v

v

Considers all possible executions

v

Reports alarms when cannot prove absence of errors

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 84 / 107

Combinations of Analyses Detecting runtime errors by static analysis and testing (SANTE)

Plugin Slicing

» Simplifies the program using control and data dependencies

> Preserves the executions reaching a point of interest (slicing criterion)
with the same behavior

» Example of slicing criteria: instructions, annotations (alarms),
function calls and returns, read and write accesses to selected
variables. . .

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 85 / 107

Combinations of Analyses Detecting runtime errors by static analysis and testing (SANTE)

SANTE: Methodology for detection of runtime errors

» Value analysis detects alarms

» Slicing reduces the program (w.r.t. one
or several alarms)

Value analysis
» Testing (PathCrawler) is used to generate

Program p, Alarms
tests on a reduced program to diagnose

‘ Program slicing ‘ alarms (after adding error branches to
» Diagnostic

trigger errors)
Slice p’, Alarms
» bug if a counter-example is generated

Test generation » if not, and all paths were explored, the

alarm is safe
» otherwise, unknown

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 86 / 107

Combinations of Analyses

SANTE: Experiments

Detecting runtime errors by static analysis and testing (SANTE)

» 9 benchmarks with known errors (from Apache, libgd, ...)
Alarm classification:
» all known errors found by SANTE

» SANTE leaves less unclassified alarms than VALUE (by 88%) or
PathCrawler (by 91%) alone

Program reduction:

» 32% in average, up to 89% for some examples

» program paths in counter-examples are in average 19% shorter
Execution time:

» Average speedup w.r.t. testing alone is 43% (up to 98% for some
examples)

[Chebaro et al. TAP 2009, TAP 2010, SAC 2012, ASEJ 2014]

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 87 / 107

Combinations of Analyses Detecting runtime errors by static analysis and testing (SANTE)

Application to security
» Reused in EU FP7 project STANCE (CEA

@ LIST, Dassault, Search Lab, FOKUS,...)
» Taint analysis to identify most

‘ Value & Taint analy5|s

Program p, Alarms

‘ Program slicing ‘ » Applied to the recent Heartbleed security
flaw (2014) in OpenSSL, other case

Slice p’, Alarms studies in progress

Fuzz testing

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 88 / 107

security-relevant alarms

» Fuzz testing (Flinder tool) for efficient
detection of vulnerabilities

v

[Kiss et al., HVC 2015]

Combinations of Analyses Deductive verification assisted by testing (STADY)

Outline

Combinations of Analyses

Deductive verification assisted by testing (STADY)

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 89 / 107

Combinations of Analyses Deductive verification assisted by testing (STADY)

Plugin WP for deductive verification

AnN-b) = B
{Anb}e{B} {{'z‘lE\ﬂb]})skip(B]
{ A} if b then c else skip{ B}
{A}lifbthenc{ B}

» Based on Weakest Precondition calculus [Dijkstra, 1976]

» Proves that a given program respects its specification

The enemy: proof failures, i.e. unproven properties
» can result from very different reasons
> an error in the code,
» an insufficient precondition,
> a too weak subcontract (e.g. loop invariant, callee’'s contract),
» a too strong postcondition,. ..

» often require costly manual analysis

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 90 / 107

Combinations of Analyses

Deductive verification assisted by testing (STADY)

Example: a C program annotated in ACSL

/*@ requires n>=0 && \valid (t+(0..n—1));
assigns \nothing;

for(k = 0; k < n; k++)
if (t[k] = 0)
return O;
return 1;

N. Kosmatov, J. Signoles (CEA LIST) Frama-C

ensures \result = 0 <—>
(\forall integer j; 0<=j < n=>1t[j] = 0);
*/
int all_zeros(int t[], int n) {
int k;
/+*@ loop invariant 0 <= k <= n;
loop invariant \forall integer j; O<=j<k => t[]]==0;
loop assigns k;
loop variant n—k;
*/

Can be proven
in Frama-C/WP ___|

2016-09-27 91 / 107

Combinations of Analyses

Example: An erroneous version

Deductive verification assisted by testing (STADY)

/*@ requires n>=0 && \valid (t+(0..n—1));
assigns \nothing;
ensures \result = 0 <—>
(\forall integer j; 0 <= j < n=>t[j] = 0);
*/
int all_zeros(int t[], int n) {
int k; Postcondition
/+*@ loop invariant 0 <= k <= n;
unproven. . .
loop assigns k;
loop variant n—k; ..
y ... because of a missing
for(k = 0; k < n; k++) loop invariant.
if (t[k] !'= 0)
return O0;
return 1;
} The reason could also be a

wrong precond, or postcond., or code

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27

92 / 107

Combinations of Analyses Deductive verification assisted by testing (STADY)

STADY: Goals

» Help the validation engineer to understand and fix the proof failures
» Provide a counter-example to illustrate the issue

» Do it automatically and efficiently

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 93 / 107

Combinations of Analyses Deductive verification assisted by testing (STADY)

STADY: Methodology for diagnosis of proof failures

» Define three kinds of proof failures:
» non-compliance (between the code and its specification)
» subcontract weakness (for a loop or a called function)
> prover incapacity
» Perform dedicated instrumentation allowing to detect
non-compliances and subcontract weaknesses
» Apply testing (PathCrawler) to try to find a counter-example and to
classify the proof failure
» Indicate a more precise feedback (if possible, with a counter-example)
to help the user to understand and to fix the proof failure

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 94 / 107

Combinations of Analyses Deductive verification assisted by testing (STADY)

STADY: Initial experiments

» 20 annotated (provable) programs (from [Burghardt, Gerlach])

» 928 mutants generated (erroneous code, erroneous or missing
annotation)

» STADY is applied to classify proof failures
Alarm classification:

» STADY classified 97% proof failures
Execution time: comparable to WP

» WP takes in average 2.6 sec. per mutant (13 sec. per unproven
mutant)

» STADY takes in average 2.7 sec. per unproven mutant
Partial coverage:
» Testing with partial coverage remains efficient in STADY

[Petiot et al. TAP 2014, SCAM 2014, TAP 2016]

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 95 / 107

Combinations of Analyses Optimizing testing by VALUE and WP (LTest)

Outline

Combinations of Analyses

Optimizing testing by value analysis and weakest precondition (LTest)

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 96 / 107

Combinations of Analyses Optimizing testing by VALUE and WP (LTest)

Context: white-box testing

» Generate a test input
» Run it and check for errors
» Estimate coverage: if enough, then stop, else loop

Coverage criteria (decision, mcdc, mutants, etc.) play a major role

> generate tests, decide when to stop, assess quality of testing

The enemy: Uncoverable test objectives

» waste generation effort, imprecise coverage ratios
» cause: structural coverage criteria are ... structural
» detecting uncoverable test objectives is undecidable

Recognized as a hard and important issue in testing
» no practical solution, not so much work (compared to test gen.)
» real pain (e.g. aeronautics, mutation testing)

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 97 / 107

Combinations of Analyses Optimizing testing by VALUE and WP (LTest)

LTest: Goals

We focus on white-box (structural) coverage criteria

Automatic detection of uncoverable test objectives

» a sound method
» applicable to a large class of coverage criteria
» strong detection power, reasonable speed

> rely as much as possible on existing verification methods

Note. The test objective
“reach location loc and satisfy <
predicate p" is uncoverable

the assertion assert (—p);
at location /oc is valid

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27

98 / 107

Combinations of Analyses Optimizing testing by VALUE and WP (LTest)

Example: program with two uncoverable test objectives

int main() {
int a = nondet (0 .. 20);
int x = nondet (0 .. 1000);
return g(x,a);

}

int g(int x, int a) {
int res;
if (x+a >= x)

res = 1; // the only possible outcome
else
res = 0;
// 11: res == 0
// 12: res == 2

}

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 99 / 107

Combinations of Analyses Optimizing testing by VALUE and WP (LTest)

Example: program with two valid assertions

int main() {

int a = nondet(0 .. 20);
int x = nondet (0 .. 1000);
return g(x,a);
}
int g(int x, int a) {
int res;
if (x+a >= x)
res = 1; // the only possible outcome
else
res = 0;
//@ assert res != 0
//@ assert res != 2
}

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27

100 / 107

Combinations of Analyses Optimizing testing by VALUE and WP (LTest)

Example: program with two valid assertions

int main() {

int a = nondet (0 .. 20);
int x = nondet (0 .. 1000);
return g(x,a);
}
int g(int x, int a) {
int res;
if (x+a >= x)
res = 1; // the only possible outcome
else
res = 0;
//@ assert res != 0 // both VALUE and WP fail
//@ assert res != 2 // detected as valid

}

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27

100 / 107

Combinations of Analyses Optimizing testing by VALUE and WP (LTest)

L Test Methodology: Combine VALUE & WP

Goal: get the best of the two worlds
» ldea: VALUE passes to WP the global information that WP needs

Which information, and how to transfer it?
» VALUE computes variable domains

» WP naturally takes into account assumptions (assume)

Proposed solution:

» VALUE exports computed variable domains in the form of
WP-assumptions

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 101 / 107

Combinations of Analyses Optimizing testing by VALUE and WP (LTest)

Example: alone, both VALUE and WP falil

int main() {
int a = nondet (0 .. 20);
int x = nondet(0 .. 1000);
return g(x,a);

}

int g(int x, int a) {

int res;
if (x+a >= x)

res = 1; // the only possible outcome
else
res = 0;
//@ assert res != 0 // both VALUE and WP fail

}

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27

102 / 107

Combinations of Analyses Optimizing testing by VALUE and WP (LTest)

Example: VALUEGWP

int main() {
int a = nondet (0 .. 20);
int x = nondet(0 .. 1000);
return g(x,a);

}

int g(int x, int a) {

//@ assume 0 <= a <= 20

//@ assume 0 <= x <= 1000 // VALUE inserts domains...

int res;
if (x+a >= x)
res = 1; // the only possible outcome
else
res = 0;
//@ assert res != 0
}
N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 103 / 107

Combinations of Analyses Optimizing testing by VALUE and WP (LTest)

Example: VALUEGWP

int main() {
int a = nondet (0 .. 20);
int x = nondet(0 .. 1000);
return g(x,a);

}

int g(int x, int a) {

//@ assume 0 <= a <= 20

//@ assume 0 <= x <= 1000 // VALUE inserts domains...

int res;
if (x+a >= x)
res = 1; // the only possible outcome
else
res = 0;
//@ assert res != 0 // ... and WP succeeds!
}
N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 103 / 107

Combinations of Analyses Optimizing testing by VALUE and WP (LTest)

L Test: Results and Experiments

» automatic, sound and generic method
» new combination of existing verification techniques

» experiments for 12 programs and 3 criteria (CC, MCC, WM):

» strong detection power (95%),

» reasonable detection speed (< 1s/obj.),

> test generation speedup (3.8x in average),

» more accurate coverage ratios (99.2% instead of 91.1% in average,
91.6% instead of 61.5% minimum)

[Bardin et al. ICST 2014, TAP 2014, ICST 2015]

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 104 / 107

Conclusion

Outline

Conclusion

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 105 / 107

Conclusion

Conclusion
W

[¢)

have presented how to:

formally specify C code with ACSL

prove programs with WP

verify the absence of runtime errors with Value
generate test cases with PathCrawler

verify annotations at runtime with E-ACSL

vV V. v v v Y

combine analyses in different ways
All of these and much more inside Frama-C
May be used for:
> teaching

» academic prototyping
» industrial applications

http://frama-c.com

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27

106 / 107

Conclusion

Some Industrial Applications

Airbus & Atos: WP and home-made plug-ins for avionic applications

EDF & Areva: Value for nuclear applications

IRSN: WP for nuclear applications

Bureau Veritas: normative activities and Frama-Clang

TrustInSoft and their customers: Value and Frama-Clang for security

applications

» Dassault Aviation: home-made plug-ins 4+ Value + Slicing + E-ACSL
for security counter-measures

» Mitsubishi Electric: experimenting PathCrawler

vV v vy VvYyy

@ arsus ATOS <ceor B
o

- TRUSTNISOFT A DASSAULT 4 wiTsuBSHI
. AviaTion A¥ N ELECTRIC

N. Kosmatov, J. Signoles (CEA LIST) Frama-C 2016-09-27 107 / 107

	Frama-C Overview
	Formal Specification and Deductive Verification with WP
	Overview of ACSL and WP
	Function contracts
	Programs with loops
	My proof fails... What to do?

	Value Analysis
	Value
	Eva
	Derived analyses

	Structural Unit Testing with PathCrawler
	Runtime Verification with E-ACSL
	E-ACSL Specification Language
	E-ACSL Plug-in

	Combinations of Analyses
	Detecting runtime errors by static analysis and testing (SANTE)
	Deductive verification assisted by testing (STADY)
	Optimizing testing by value analysis and weakest precondition (LTest)

	Conclusion

